Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T08:24:50.259Z Has data issue: false hasContentIssue false

Neural Architecture Search for Transmission Electron Microscopy: Rapid Automation of Phase and Orientation Determination in TEM images

Published online by Cambridge University Press:  22 July 2022

Lies Hadjadj*
Affiliation:
Computer Science Laboratory (LIG), Grenoble, France
Alexis Deschamps
Affiliation:
Department of Physics (SIMaP), Grenoble, France
Edgar Rauch
Affiliation:
Department of Physics (SIMaP), Grenoble, France
Massih-Reza Amini
Affiliation:
Computer Science Laboratory (LIG), Grenoble, France
Muriel Veron
Affiliation:
Department of Physics (SIMaP), Grenoble, France
Sana Louhichi
Affiliation:
Department of Statistics, Grenoble, France
*
*Corresponding author: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
On Demand - Artificial Intelligence, Instrument Automation, and High-Dimensional Data Analytics for Microscopy and Microanalysis
Copyright
Copyright © Microscopy Society of America 2022

References

Rauch, E.F., Dupuy, L., Rapid Spot Diffraction Pattern Identification Through Template Matching, Archives of Metallurgy and Materials 50 (2005), 87-99.Google Scholar
Zaefferer, S., and Wu, G., Development of a TEM-based Orientation Microscopy System. Applications of Texture Analysis (2008), 221-228.10.1002/9780470444214.ch24CrossRefGoogle Scholar
Martineau, B. et al. , Unsupervised machine learning applied to scanning precession electron diffraction data. Advanced Structural and Chemical Imaging (2019), doi:10.1186/s40679-019-0063-3.CrossRefGoogle Scholar
Alexander, Z. et al. , Blind Source Separation in SPED datasets: Machine learning assisted phase and orientation determination in multilayer oxide electronic thin film devices (2020).Google Scholar
Aguiar, J. A. et al. , Decoding crystallography from high-resolution electron imaging and diffraction datasets with deep learning, Science Advances (2019), doi:10.1126/sciadv.aaw1949.Google ScholarPubMed
Xu, M., Kumar, A., and LeBeau, J., Automating Electron Microscopy through Machine Learning and USETEM, Microsc. Microanal. 27 (2021), p. 2988. doi:10.1017/S14319276211010394.CrossRefGoogle Scholar
Munshi, J. et al. , 4D >Crystal: Deep Learning Crystallographic Information from Electron Diffraction Images, Microsc. Microanal. 27 (2021), p. 2774. doi:10.1017/S1431927621009739.CrossRefGoogle Scholar
Kikuchi, J.-i. and Yasuhara, K. (2012). Transmission Electron Microscopy (TEM). In Supramolecular Chemistry (eds Gale, P.A. and Steed, J.W.). doi:10.1002/9780470661345.smc022.Google Scholar
Shi, C. et al. , Rapid and Semi-Automated Analysis of 4D-STEM data via Unsupervised Learning, Microsc. Microanal. 27 (2021), p. 58. doi:10.1017/S1431927621000805.CrossRefGoogle Scholar
Papers with Code, https://paperswithcode.com/area/computer-vision (accessed February 17, 2022).Google Scholar
H. Jin, Q. Song, and Xi Hu. Auto-keras: An efficient neural architecture search system. Proceedings of the 25th SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.10.1145/3292500.3330648CrossRefGoogle Scholar