Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T10:00:22.318Z Has data issue: false hasContentIssue false

Nanosized Field-effect Transistor Based on Germanium for Next Generation Biosensors in Scanning Ion-conductance Microscopy

Published online by Cambridge University Press:  30 July 2020

Andrei Turutin
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Aleksandr Temirov
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Ilya Kubasov
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Aleksandr Kislyuk
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Mikhail Malinkovich
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Yuriy Parkhomenko
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Alexander Erofeev
Affiliation:
National University of Science and Technology ‘‘MISIS”; Lomonosov Moscow State University, Moscow, Moskva, Russia
Yuri Korchev
Affiliation:
Imperial College London, London, England, United Kingdom

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advances in Electron Microscopy to Characterize Materials Embedded in Devices
Copyright
Copyright © Microscopy Society of America 2020

References

Ren, R.; Zhang, Y.; Nadappuram, B. P.; Akpinar, B.; Klenerman, D.; Ivanov, A. P.; Edel, J. B.; Korchev, Y. Nanopore extended field-effect transistor for selective single-molecule biosensing. Nat. Commun. 2017, 8, 586, doi:10.1038/s41467-017-00549-w.CrossRefGoogle ScholarPubMed
Zhang, Y.; Clausmeyer, J.; Babakinejad, B.; López Córdoba, A.; Ali, T.; Shevchuk, A.; Takahashi, Y.; Novak, P.; Edwards, C.; Lab, M.; Gopal, S.; Chiappini, C.; Anand, U.; Magnani, L.; Coombes, R. C.; Gorelik, J.; Matsue, T.; Schuhmann, W.; Klenerman, D.; Sviderskaya, E. V.; Korchev, Y. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis. ACS Nano 2016, 10, 32143221, doi:10.1021/acsnano.5b05211.CrossRefGoogle ScholarPubMed
Akhavan, O.; Ghaderi, E.; Rahighi, R.; Abdolahad, M. Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels. Carbon N. Y. 2014, 79, 654663, doi:10.1016/j.carbon.2014.08.058.CrossRefGoogle Scholar
Tsao, C.-Y.; Wong, J.; Huang, J.; Campbell, P.; Song, D.; Green, M. A. Structural dependence of electrical properties of Ge films prepared by RF magnetron sputtering. Appl. Phys. A 2011, 102, 689694, doi:10.1007/s00339-010-5957-9.CrossRefGoogle Scholar
Duan, X.; Gao, R.; Xie, P.; Cohen-Karni, T.; Qing, Q.; Choe, H. S.; Tian, B.; Jiang, X.; Lieber, C. M. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 2012, 7, 174179, doi:10.1038/nnano.2011.223.CrossRefGoogle Scholar
Veigas, B.; Fortunato, E.; Baptista, P. Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives. Sensors 2015, 15, 1038010398, doi:10.3390/s150510380.CrossRefGoogle ScholarPubMed
Fu, T.-M.; Duan, X.; Jiang, Z.; Dai, X.; Xie, P.; Cheng, Z.; Lieber, C. M. Sub-10-nm intracellular bioelectronic probes from nanowire-nanotube heterostructures. Proc. Natl. Acad. Sci. 2014, 111, 12591264, doi:10.1073/pnas.1323389111.CrossRefGoogle ScholarPubMed
Li, Q.; Lu, N.; Wang, L.; Fan, C. Advances in Nanowire Transistor-Based Biosensors. Small Methods 2018, 2, 1700263, doi:10.1002/smtd.201700263.CrossRefGoogle Scholar