Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T06:27:35.288Z Has data issue: false hasContentIssue false

Nanoscale Precipitation in a Maraging Steel Studied by APFIM

Published online by Cambridge University Press:  01 June 2004

Krystyna Stiller
Affiliation:
Department of Experimental Physics, Chalmers University of Technology, SE-412 996 Göteborg, Sweden
Mats Hättestrand
Affiliation:
R&D Centre, AB Sandvik Steel, SE- 811 81 Sandviken, Sweden
Get access

Abstract

This article summarizes findings from our previous investigations and recent studies concerning precipitation in a maraging steel of type 13Cr-9Ni-2Mo-2Cu (at.%) with small additions of Ti (1 at.%) and Al (0.7 at.%). The material was investigated after aging at 475°C up to 400 h using both conventional and three-dimensional atom-probe analyses. The process of phase decomposition in the steel proved to be complicated. It consisted of precipitation of several phases with different chemistry. A Cu-rich phase was first to precipitate and Mo was last in the precipitation sequence. The influence of the complex precipitation path on the material properties is discussed. The investigation clearly demonstrated the usefulness of the applied techniques for investigation of nanoscale precipitation. It is also shown that, complementary methods (such as TEM and EFTEM) giving structural and chemical information on a larger scale must be applied to explain the good properties of the steel after prolonged aging.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrén, H-O. (1986). J Phys 47-C7, 483488.
Bostel, A., Blavette, D., Menand, A., & Sarrau, J.M. (1989). J de Phys (Paris) C8-50, 501.
Davies, D.M. & Ralph, B. (1972). J Microsc 96, 343.
Fourlaris, G., Baker, A.J., & Papadimitrious, G.D. (1995). Acta Metall Mater 43, 25892604.
Goodman, S.R., Brenner, S.S., & Low, J.R., Jr. (1973). Met Trans 4, 2371.
Hättestrand, M., Nilsson, J.O., Liu, P., & Stiller, K. (2004). Acta Metall 52, 10231037.
Liu, P., Stigenberg, A.M., & Nilsson, J.O. (1995). Acta Metall 43, 2881.
Miller, M.K., Cerezo, A., Hetherington, M.G., & Smith, G.D. (1996). In Atom Probe Field Ion Microscopy, Oxford, UK: Oxford Science Publications, Clarendon Press.
Nilsson, J.O., Stigenberg, A.M., & Liu, P. (1994). Metall Mat Trans A 25A, 2225.
Sha, W., Cerezo, A., & Smith, G.D.W. (1993). Metall Trans 24A, 12211251.
Stigenberg, A.M., Nilsson, J.O., Liu, P., & Wilson, A. (1994). Wire 44, 375.
Stiller, K., Danoix, F., & Bostel, A. (1996). Appl Surf Sci 94/95, 326333.
Stiller, K., Danoix, F., & Hättestrand, M. (1998a). Mat Sci Eng A 250, 2226.
Stiller, K., Hättestrand, M., & Danoix, F. (1998b). Acta Mater 46, 60636073.
Vasudevan, V.K., Kim, S.J., & Wayman, C.M. (1988). In Maraging Steels: Recent Development and Applications, R.K. Wilson, (Ed.), p. 283. Warrendale, PA: TMS-AIME.
Vurpillot, F., Bostel, A., & Blavette, D. (2000). Appl Phys Lett 56, 31273129.