Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T21:14:33.827Z Has data issue: false hasContentIssue false

Nanoscale Composition of Biphasic Polymer Nanocolloids in Aqueous Suspension

Published online by Cambridge University Press:  16 September 2008

Ginam Kim*
Affiliation:
Dow Corning Corporation, Science and Technology, Auburn, MI 48611, USA
Alioscka Sousa
Affiliation:
Stevens Institute of Technology, Department of Chemical, Biomedical, and Materials Engineering, Hoboken, NJ 07030, USA
Deborah Meyers
Affiliation:
Dow Corning Corporation, Science and Technology, Auburn, MI 48611, USA
Matthew Libera
Affiliation:
Stevens Institute of Technology, Department of Chemical, Biomedical, and Materials Engineering, Hoboken, NJ 07030, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The molecular distribution in nanocolloids of poly(dimethyl siloxane) (PDMS) and an organic copolymer (methyl acrylate co-methyl methacrylate co-vinyl acetate) preserved in a frozen aqueous solution was investigated using cryovalence electron energy-loss spectroscopy (EELS) coupled with a scanning transmission electron microscope. Low energy-loss spectra depend upon valence electron structure, and we show that they are substantially different for the PDMS, the copolymer, and the vitrified water studied here. Combining a high efficiency detection system and the use of high-signal low-loss spectra in EELS, we achieved a spatial resolution of 8 nm without serious beam-induced specimen damage in this radiation-sensitive soft-materials system. To obtain quantitative phase maps of silicone and copolymer composition within individual nanoparticles, spectrum datasets were processed via multiple least squares fitting. Quantitative line profiles from the resulting compositional maps indicate that the PDMS lobe of biphasic nanoparticles contained a significant amount of the copolymer and a diffuse interface was formed. Since the nanoparticle synthesis involves polymerization of acrylate monomer dissolved in PDMS nanoparticle precursors, these results suggest that the evolution of the nanocolloid morphology during synthesis is kinetically frozen as the acrylate copolymer achieves some critical molecular weight.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellare, J.R., Davis, H.T., Scriven, L.E. & Talmon, Y. (1988). Controlled environment vitrification system: An improved sample preparation. J Electr Microc Tech 10, 87111.CrossRefGoogle ScholarPubMed
Chen, Y.C., Dimonie, V. & El-Aasser, M.S. (1992). Theoretical aspects of developing latex particle morphology. Pure & App Chem 64, 16911696.CrossRefGoogle Scholar
Colliex, C. (1985). An illustrated review of various factors governing the high spatial resolution capabilities in EELS microanalysis. Ultramicroscopy 18, 131150.CrossRefGoogle Scholar
Craig, D.H. & Hu, R. (2001). Emulsion polymerized silicone-acrylate rubber impact modifiers thermoplastic blends, and methods for making. U.S. patent 6169149.Google Scholar
Craig, D.H. & Hu, R. (2002). Emulsion polymerized silicone rubber-based impact modifiers, method of making, and blends there of. U.S. patent 6433077.Google Scholar
Dubochet, J., Adrian, M., Chang, J., Homo, J., Lepault, J., McDowall, A. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Quarterly Rev Bio Phys 21, 129228.Google ScholarPubMed
Dubochet, J. & Lepault, J. (1984). Cryo-electron microscopy of vitrified water. J Phys Colloque C7, 8594.Google Scholar
Fetters, L.J., Lohse, D.J. & Corby, R.H. (1996). Physical Properties of Polymers Handbook, Marks, J.E. (Ed.). Woodbury, NY: American Institute of Physics.Google Scholar
Glotzer, S.C. (2004). Some assembly required. Science 306, 419420.CrossRefGoogle ScholarPubMed
Holtz, J.H. & Asher, S.A. (1997). Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829832.CrossRefGoogle ScholarPubMed
Inoue, M., Takahama, K., Yamaki, T., Goto, A., Ikenaga, J. & Kishimoto, H. (2001). Antifouling silicone emulsion coating-composition, process for producing the same and antifouling article coated therewith. U.S. Patent 6221498.Google Scholar
Jeong, B., Bae, Y.H., Lee, D.S. & Kim, S.W. (1997). Biodegradable block copolymers as injectable drug-delivery systems. Nature 388, 860862.CrossRefGoogle ScholarPubMed
Jones, C.D., Serpe, M.J., Schroeder, L. & Lyon, L.A. (2003). Microlens formation in microgel/gold colloid composite materials via photothermal patterning. J Am Chem Soc 125, 52925293.CrossRefGoogle ScholarPubMed
Keestra, B.J., Van Puyvelde, P.C.J., Anderson, P.D. & Meijer, H.E.H. (2003). Diffuse interface modeling of the morphology and rheology of immiscible polymer blends. Phys Fluid 15, 25672575.CrossRefGoogle Scholar
Kim, G., Sousa, A., Shope, M., Meyers, D. & Libera, M. (2006). Diffuse polymer interfaces in lobed nanoemulsions preserved in aqueous media. J Am Chem Soc 128, 65706571.CrossRefGoogle ScholarPubMed
Kim, J., Serpe, M.I. & Lyon, L.A. (2004). Hydrogel microparticles as dynamically tunable microlenses. J Am Chem Soc 126, 95129513.CrossRefGoogle ScholarPubMed
Leapman, D. & Sun, S. (1995). Cryo-electron energy loss spectroscopy: Observations on vitrified hydrated specimens and radiation damage. Ultramicroscopy 59, 7179.CrossRefGoogle ScholarPubMed
Leapman, R.D. & Hunt, J.A. (1991). Comparison of detection limits for EELS and EDXS. Microsc Microanal Microstruct 2, 231244.CrossRefGoogle Scholar
Lee, I.S. (2004). Acrylic emulsion coating for films, paper and rubber. U.S. patent 6828399.Google Scholar
Miyata, T., Asami, N. & Uragami, T. (1999). A reversibly antigen-responsive hydrogel. Nature 399, 766769.CrossRefGoogle ScholarPubMed
Murthy, N., Thng, Y.X., Schuck, S., Xu, M.C. & Fréchet, J.M.J.A. (2002). Novel strategy for encapsulation and release of proteins: Hydrogels and microgels with acid-labile acetal cross-linkers. J Am Chem Soc 124, 1239812399.CrossRefGoogle ScholarPubMed
Nayak, S., Lee, H., Chmielewski, J. & Lyon, L.A. (2004). Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126, 1025810259.CrossRefGoogle ScholarPubMed
Sousa, A., Aitouchen, A. & Libera, M. (2006a). Water mapping in hydrated soft materials. Ultramicroscopy 106, 130145.CrossRefGoogle ScholarPubMed
Sousa, A., Schut, J., Kohn, J. & Libera, M. (2006b). Nanoscale morphological changes during hydrolytic degradation and erosion of a bioresorbable polymer. Macromolecules 39, 73067312.CrossRefGoogle Scholar
Sun, S., Shi, S., Hunt, J. & Leapman, R. (1995). Quantitative water mapping of cryosectioned cells by electron energy-loss spectroscopy. J Microsc 177, 1830.CrossRefGoogle ScholarPubMed
Sun, S., Shi, S. & Leapman, R. (1993). Water distribution of hydrated biological specimens by valence electron energy loss spectroscopy. Ultramicroscopy 50, 127139.CrossRefGoogle ScholarPubMed
Sundberg, D.C. & Durant, Y.G. (2003). Latex particle morphology, fundamental aspects: A review. Polym Reac Eng 11, 379432.CrossRefGoogle Scholar
Sundberg, E.J. & Sundberg, D.C. (1993). Morphology development for three-component emulsion polymers: Theory and experiments. J App Poly Sci 47, 12771294.CrossRefGoogle Scholar
Tauer, K., Kaspar, J. & Antonietti, M. (2000). Equilibrium swelling of colloidal polymeric particles with water-insoluble organic solvents. Colloid Polymer Sci 278, 814820.CrossRefGoogle Scholar
Terryn, C., Michel, J., Kilian, L., Bonhomme, P. & Balossier, G. (2000). Comparison of intracellular water content measurements by dark-field imaging and EELS in medium voltage TEM. Eur Phys J AP 11, 215226.CrossRefGoogle Scholar
Terryn, C., Michel, J., Thomas, X., Laurent-Maquin, D. & Balossier, G. (2004). Implementation of subcellular water mapping by electron energy loss spectroscopy in a medium-voltage scanning transmission electron microscope. Eur Biophys J 33, 321327.CrossRefGoogle Scholar
Tiarks, F., Landfester, K. & Antonietti, M. (2001). Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17, 908918.CrossRefGoogle Scholar
Torza, S. & Mason, S.G. (1970). Three-phase interactions in shear and electrical fields. J Coll Interf Sci 33, 6783.CrossRefGoogle Scholar
Yakovlev, S. & Libera, M. (in press). Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope. Micron.Google Scholar
Zhang, J., Xu, S. & Kumacheva, E. (2004). Polymer microgels: Reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126, 79087914.CrossRefGoogle ScholarPubMed