Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T19:11:02.542Z Has data issue: false hasContentIssue false

A Nanoscale Characterization with Electron Microscopy of Multilayered CrAlYN Coatings: A Singular Functional Nanostructure

Published online by Cambridge University Press:  21 January 2014

Teresa C. Rojas*
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Américo Vespucio 49, 41092-Sevilla, Spain
Santiago Domínguez-Meister
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Américo Vespucio 49, 41092-Sevilla, Spain
Marta Brizuela
Affiliation:
TECNALIA, Mikeletegui Pasealekua, 20009 Donostia-San Sebastián, Spain
Alberto García-Luis
Affiliation:
TECNALIA, Mikeletegui Pasealekua, 20009 Donostia-San Sebastián, Spain
Asunción Fernández
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Américo Vespucio 49, 41092-Sevilla, Spain
Juan Carlos Sánchez-López
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Américo Vespucio 49, 41092-Sevilla, Spain
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

A combination of transmission electron microscopy techniques and spatially resolved microanalysis is used to investigate the nanostructure, constituting phases, and chemical elemental distribution in CrAlYN multilayered coatings. The location of the metallic elements and their chemical state are needed to understand their functional properties. Samples were prepared with variable Al (4–12 at%) and Y (2–5 at%) contents by direct current reactive magnetron sputtering on silicon substrates using metallic targets and Ar/N2 mixtures under different deposition parameters (power applied to the target and rotation speed of the sample holder). The changes produced in the nanostructure and chemical distribution were investigated. Nanoscale resolution electron microscopy analysis has shown that these coatings present a singular nanostructure formed by multilayers containing at a certain periodicity nanovoids filled with molecular nitrogen. Spatially resolved energy dispersive spectroscopy and electron energy loss elemental mappings and profiles showed that the chromium, aluminum, and yttrium atoms are distributed in a sequential way following the position of the targets inside the deposition chamber. Analysis of the different atomic distribution and phases formed at the nanoscale is discussed depending on the deposition parameters.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, M.D., Sanjinés, R., Endrino, J.L., Gago, R., Andersson, J. & Sánchez-López, J.C. (2011). Identification of ternary phases in TiBC/a-C nanocomposite thin films: Influence on the electrical and optical properties. Plasma Process Polym 8(7), 579588.Google Scholar
Banakh, O., Schmid, P.E., Sanjinés, R. & Lévy, F. (2003). High-temperature oxidation resistance of Cr1−xAlxN thin films deposited by reactive magnetron sputtering. Surf Coat Technol 163164, 5761.Google Scholar
Barshilia, H.C., Deepthi, B., Rajam, K.S., Bhatti, K.P. & Chaudhary, S. (2009). Growth and characterization of superlattices prepared by reactive direct current magnetron sputtering. J Vac Sci Technol A 27, 2933.Google Scholar
Barshilia, H.C., Deepthi, B., Selvakumar, M., Jain, A. & Rajam, K.S. (2007). Nanolayered multilayer coatings of CrN/CrAlN prepared by reactive DC magnetron sputtering. Appl Surf Sci 253, 50765083.Google Scholar
Barshilia, H.C., Selvakumar, N., Deepthi, B. & Rajam, K.S. (2006). A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings. Surf Coat Technol 201, 21932201 Google Scholar
Braun, R., Rovere, F., Mayrhofer, P.H. & Leyens, C. (2010). Environmental protection of γ-TiAl based alloy Ti-45Al-8Nb by CrAlYN thin films and thermal barrier coatings. Intermetallics 18, 479486.Google Scholar
Brizuela, M., García-Luis, A., Braceras, I., Oñate, J.I., Sánchez-López, J.C., Martínez-Martínez, D., López-Cartes, C. & Fernández, A. (2005). Magnetron sputtering of Cr(Al)N coatings: Mechanical and tribological study. Surf Coat Technol 200(1-4), 192197.CrossRefGoogle Scholar
Brizuela, M., García-Luis, A., Corengia, P., González-Santamaría, D., Muñoz, R. & González, J.J. (2009). Microstructural, mechanical and tribological properties of CrAlYN coatings deposited by magnetron sputtering. Plasma Process Polym 6, 162167.Google Scholar
Cabrera, G., Caicedo, J.C., Amaya, C., Yate, L., Muñoz Saldaña, J.C. & Prieto, P. (2011). Enhancement of mechanical and tribological properties in AISI D3 steel substrates by using a non-isostructural CrN/AlN multilayer coating. Mater Chem Phys 125, 576586.CrossRefGoogle Scholar
Craven, A.J. (1995). The electron energy-loss near-edge structure (ELNES) on the N K-edges from the transition metal mononitrides with the rock-salt structure and its comparison with that on the C K-edges from the corresponding transition metal monocarbides. J Microsc 180(3), 250262.Google Scholar
Endrino, J.L., Fox-Rabinovich, G.S., Reiter, A., Veldhuis, S.V., Escobar Galindo, R., Albella, J.M. & Marco, J.F. (2007). Oxidation tuning in AlCrN coatings. Surf Coat Technol 201(8), 45054511.Google Scholar
Escobar Galindo, R., Endrino, J.L., Martínez, R. & Albella, J.M. (2010). Improving the oxidation resistance of AlCrN coatings by tailoring chromium out-diffusion. Spectrochim Acta Part B 65, 950958.CrossRefGoogle Scholar
Fukumoto, N., Ezura, H. & Suzuki, T. (2009). Synthesis and oxidation resistance of TiAlSiN and multilayare TiAlSiN/CrAlN coating. Surf Coat Technol 204, 902906.CrossRefGoogle Scholar
Godinho, V., Rojas, T.C. & Fernández, A. (2012a). Magnetron sputtered a-SiOxNy thin films: A closed porous nanostructure with controlled optical and mechanical properties. Micropor Mesopor Mater 149, 142146.Google Scholar
Godinho, V., Rojas, T.C., Trasobares, S., Ferrer, F.J., Delplancke-Ogletree, M.P. & Fernández, A. (2012b). Microstructural and chemical characterization of nanostructured TiAlSiN. Microsc Microanal 18, 114.Google Scholar
Hasegawa, H., Kawate, M. & Suzuki, T. (2005). Effects of Al contents on microstructures of Cr1−x Al x N and Zr1−x Al x N films synthesized by cathodic arc method. Surf Coat Technol 200, 24092413.Google Scholar
Holec, D., Rachbauer, R., Kiener, D., Cherns, P.D., Costa, P.M.F.J., Mcaleese, C., Mayrhofer, P.H. & Humphreys, C.J. (2011). Towards predictive modelling of near-edge structures in electron energy loss spectra of AlN based ternary alloys. Phys Rev B 83(16), 165122165132.Google Scholar
Hovsepian, P.E.H., Lewis, D.B. & Münz, W.D. (2000). Recent progress in large scale manufacturing of multilayer/superlattice hard coatings. Surf Coat Technol 133134, 166175.Google Scholar
Hovsepian, P.E.H., Reinhard, C. & Ehiasarian, A.P. (2006). CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique. Surf Coat Technol 201, 41054110.CrossRefGoogle Scholar
Kawate, M., Hashimoto, A.K. & Suzuki, T. (2003). Microstructure and mechanical properties of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering on AISI H13 steel. Surf Coat Technol 165, 163167.Google Scholar
Kucheyev, S.O., Williams, J.S., Zou, J., Jagadish, C. & Li, G. (2000). Ion-beam-induced dissociation and bubble formation in GaN. Appl Phys Lett 77(22), 35773579.Google Scholar
Lee, H.Y., Han Jeon, G., Baeg Seung, H. & Yang, S.E.H. (2002). Structure and properties of WC-CrAlN superlattice films by cathodic arc ion plating process. Thin Solid Films 420421, 414420.Google Scholar
Lin, J., Mishra, B., Moore, J.J. & Sproul, W.D. (2008). A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses. Surf Coat Technol 202, 32723283.CrossRefGoogle Scholar
Mackenzie, M., Weatherly, G.C., Mccomb, D.C. & Craven, A.J. (2005). Electron energy loss spectroscopy of a TiAIN coating on stainless steel. Scripta Materialia 53, 983987.Google Scholar
Mayrhofer, P.H., Music, D., Reeswinkel, T.H., Fuss, H.G. & Schneider, J.M. (2008). Structure, elastic properties and phase stability of Cr1-xAlxN. Acta Mater 56, 24692475.Google Scholar
Mège-Revil, A., Steyer, P., Fontaine, J., Pierson, J.F. & Esnouf, C. (2009). Oxidation and tribo-oxidation of nanocomposite Cr-Si-N coatings deposited by a hybrid arc/magnetron process. Surf Coat Technol 204, 973977.Google Scholar
Musil, J., Vlcek, J. & Zeman, P. (2008). Hard amorphous nanocomposite coatings with oxidation resistance above 1000 degrees C. Adv Appl Ceramics 107, 148154.Google Scholar
Panjan, M., Cekada, M., Panjan, P., Zalar, A. & Peterman, T. (2008). Sputtering simulation of multilayer coatings in industrial PVD system with three-fold rotation. Vacuum 82, 158161.Google Scholar
Panjan, M., Peterman, T., Cekada, M. & Panjan, P. (2009). Simulation of a multilayer structure in coatings prepared by magnetron sputtering. Surf Coat Technol 204, 850853.Google Scholar
Perez-Omil, J.A. (1994). Interpretacion sistematica de imágenes de microscopía electronica de alta resolucion de materiales policristalino. Estudio de catalizadores metálicos soportados. Eje-Z software programme. Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica. Cádiz, Spain: University of Cádiz. Google Scholar
Prescott, R. & Graham, M.J. (1992). The formation of aluminium-oxide scales on high-temperature alloys. Oxid Met 38, 233254.CrossRefGoogle Scholar
Reiter, A.E., Derflinger, V.H., Hanselmann, B., Bachmann, T. & Sartory, B. (2005). Investigation of the properties of Al1−x Cr x N coatings prepared by cathodic arc evaporation. Surf Coat Technol 7, 21142122.Google Scholar
Rojas, T.C., El Mrabet, S., Domínguez-Meister, S., Brizuela, M., García-Luis, A. & Sánchez-López, J.C. (2012). Chemical and microstructural characterization of (Y or Zr)-doped CrAlN coatings. Surf Coat Technol 211, 104110.Google Scholar
Romero-Gomez, P., Palmerom, A., Ben, T., Lozano, J.G., Molina, S.I. & González-Elipe, A.R. (2010). Surface nanostructuring of TiO2 thin films by high energy ion irradiation. Phys Rev B 82, 115420. Google Scholar
Ross, I.M., Rainforth, W.M., Seabourne, C.R., Scott, A.J., Wang, P., Mendis, B.G., Bleloch, A.L., Reinhard, C. & Hovsepian, P.E.H. (2010). Electron energy loss spectroscopy of nano-scale CrAlYN/CrN-CrAlY(O)N/Cr(O)N multilayer coatings deposited by unbalanced magnetron sputtering. Thin Solid Films 518, 51215127.Google Scholar
Rovere, F., Mayrhofer, P.H., Reinholdt, A., Mayer, J. & Scheneider, J.M. (2008). The effect of yttrium incorporation on the oxidation resistance of Cr-Al-N coatings. Surf Coat Technol 202, 58705875.Google Scholar
Ruck, B.J., Koo, A., Lanke, U.D., Budde, F., Granville, S., Trodahl, H.J., Bittar, A., Metson, J.B., Kennedy, V.J. & Markwitz, A. (2004). Quantitative study of molecular N2 trapped in disordered GaN:O films. Phys Rev B 70, 235202. Google Scholar
Sánchez, J.E., Sánchez, O.M., Ipaz, L., Aperador, W., Caicedo, J.C., Amaya, C., Hernández Landaverde, M.A., Espinoza Beltrán, F., Muñoz-Saldaña, J. & Zambrano, G. (2010). Mechanical, tribological, and electrochemical behavior of Cr1−x Al x N coatings deposited by r.f. reactive magnetron co-sputtering method. Appl Surf Sci 256, 23802387.Google Scholar
Sánchez-López, J.C., Martínez-Martínez, D., López-Cartes, C., Fernández, A., Brizuela, M., García-Luis, A. & Oñate, J.I. (2005a). Mechanical behaviour and oxidation resistance of Cr(Al)N coatings. J Vac Sci Technol A 23(4), 681686.Google Scholar
Sánchez-López, J.C., Martínez-Martínez, D., López-Cartes, C., Fernández-Ramos, C. & Fernández, A. (2005b). A nanoscale approach for the characterization of amorphous carbon-based lubricant coatings. Surf Coat Technol 200, 4045.Google Scholar
Steyer, P.H., Mege, A., Pech, D., Mendibide, C., Fontaine, J., Pierson, J.F., Esnouf, C. & Goudeau, P. (2008). Influence of the nanostructuration of PVD hard TiN-based films on the durability of coated steel. Surf Coat Technol 202, 22682277.Google Scholar
Tien, S.-K., Lin, C.-H., Tsai, Y.-Z. & Duh, J.-G. (2010). Oxidation behavior, microstructure evolution and thermal stability in nanostructured CrN/AlN multilayer hard coatings. J Alloy Comp 489(1), 237241.Google Scholar
Veprek, S. & Veprek-Heijman Maritza, J.G. (2008). Industrial applications of superhard nanocomposite coatings. Surf Coat Technol 202(21), 50635073.Google Scholar
Wang, L., Nie, X., Housden, J., Spain, E., Jiang, J.C., Meletis, E.I., Leyland, A. & Matthews, A. (2008). Material transfer phenomena and failure mechanisms of a nanostructured Cr-Al-N coating in laboratory wear test and an industrial punch tool application. Surf Coat Technol 203, 816821.Google Scholar
Willmann, H., Mayrhofer, P.H., Persson, P.O.A., Reiter, A.E., Hultman, L. & Mitterer, C. (2006). Thermal stability of Al–Cr–N hard coatings. Scripta Mater 54, 18471851.CrossRefGoogle Scholar