Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T14:50:17.808Z Has data issue: false hasContentIssue false

Multi-Scale Correlative Microscopy Investigation of Both Structure and Chemistry of Deformation Twin Bundles in Fe–Mn–C Steel

Published online by Cambridge University Press:  08 October 2013

Ross K.W. Marceau*
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Ivan Gutierrez-Urrutia
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Michael Herbig
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Katie L. Moore
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Sergio Lozano-Perez
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
*
*Corresponding author.[email protected]
Get access

Abstract

A multi-scale investigation of twin bundles in Fe–22Mn–0.6C (wt%) twinning-induced plasticity steel after tensile deformation has been carried out by truly correlative means; using electron channelling contrast imaging combined with electron backscatter diffraction, high-resolution secondary ion mass spectrometry, scanning transmission electron microscopy, and atom probe tomography on the exact same region of interest in the sample. It was revealed that there was no significant segregation of Mn or C to the twin boundary interfaces.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albou, A., Galceran, M., Renard, K., Godet, S. & Jacques, P.J. (2013). Nanoscale characterization of the evolution of the twin–matrix orientation in Fe–Mn–C twinning-induced plasticity steel by means of transmission electron microscopy orientation mapping. Scripta Mater 68, 400403.CrossRefGoogle Scholar
Bouaziz, O., Allain, S. & Scott, C. (2008). Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scripta Mater 58, 484487.CrossRefGoogle Scholar
Bouaziz, O., Allain, S., Scott, C.P., Cugy, P. & Barbier, D. (2011a). High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr Opin Solid State Mater Sci 15, 141168.CrossRefGoogle Scholar
Bouaziz, O., Zurob, H., Chehab, B., Embury, J.D., Allain, S. & Huang, M. (2011b). Effect of chemical composition on work hardening of Fe–Mn–C TWIP steels. Mater Sci Tech 27, 707709.CrossRefGoogle Scholar
Christien, F., Downing, C., Moore, K.L. & Grovenor, C.R.M. (2012). Quantification of grain boundary equilibrium segregation by NanoSIMS analysis of bulk samples. Surf Interface Anal 44, 377387.CrossRefGoogle Scholar
Derue, C., Gibouin, D., Demarty, M., Verdus, M.C., Lefebvre, F., Thellier, M. & Ripoll, C. (2006). Dynamic-SIMS imaging and quantification of inorganic ions in frozen-hydrated plant samples. Microsc Res Tech 69, 5363.CrossRefGoogle ScholarPubMed
Ericsson, T. (1966). On the Suzuki effect and spinodal decomposition. Acta Metall 14, 10731084.CrossRefGoogle Scholar
Follet-Gueye, M.L., Verdus, M.C., Demarty, M., Thellier, M. & Ripoll, C. (1998). Cambium pre-activation in beech correlates with a strong temporary increase of calcium in cambium and phloem but not in xylem cells. Cell Calcium 24, 205211.CrossRefGoogle Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer.CrossRefGoogle Scholar
Gutierrez-Urrutia, I. & Raabe, D. (2011). Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater 59, 64496462.CrossRefGoogle Scholar
Gutierrez-Urrutia, I. & Raabe, D. (2012). Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater 60, 57915802.CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Zaefferer, S. & Raabe, D. (2009). Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scripta Mater 61, 737740.CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Zaefferer, S. & Raabe, D. (2010). The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. Mater Sci Eng A 527, 35523560.CrossRefGoogle Scholar
Karaman, I., Sehitoglu, H., Chumlyakov, Y.I., Maier, H.J. & Kireeva, I.V. (2001). Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals. Scripta Mater 44, 337343.CrossRefGoogle Scholar
Koyama, M., Akiyama, E., Sawaguchi, T., Raabe, D. & Tsuzaki, K. (2012a). Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel. Scripta Mater 66, 459462.CrossRefGoogle Scholar
Koyama, M., Akiyama, E. & Tsuzaki, K. (2012b). Hydrogen embrittlement in a Fe–Mn–C ternary twinning-induced plasticity steel. Corr Sci 54, 14.CrossRefGoogle Scholar
Koyama, M., Akiyama, E. & Tsuzaki, K. (2012c). Hydrogen-induced delayed fracture of a Fe–22Mn–0.6C steel pre-strained at different strain rates. Scripta Mater 66, 947950.CrossRefGoogle Scholar
Miller, M.K. & Russell, K.F. (2007). Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy 107, 761766.CrossRefGoogle ScholarPubMed
Moore, K.L., Lombi, E., Zhao, F.J. & Grovenor, C.R.M. (2012). Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants. Anal Bioanal Chem 402, 32633273.CrossRefGoogle ScholarPubMed
Renard, K. & Jacques, P.J. (2012). On the relationship between work hardening and twinning rate in TWIP steels. Mater Sci Eng A 30, 814.CrossRefGoogle Scholar
Saeed-Akbari, A., Mosecker, L., Schwedt, A. & Bleck, W. (2012). Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part I. Mechanism maps and work-hardening behavior. Metall Mater Trans A 43, 16881704.Google Scholar
Senk, D., Emmerich, H., Rezende, J. & Siquieri, R. (2007). Estimation of segregation in iron-manganese steels. Adv Eng Mater 9, 695702.CrossRefGoogle Scholar
Steinmetz, D.R., Jäpel, T., Wietbrock, B., Eisenlohr, P., Gutierrez-Urrutia, I., Saeed-Akbari, A., Hickel, T., Roters, F. & Raabe, D. (2013). Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Mater 61, 494510.CrossRefGoogle Scholar
Suzuki, H. (1952). Chemical interaction of solute atoms with dislocations. Sci Rep Res Inst Tohoku Univ A4, 455463.Google Scholar
Suzuki, H. (1962). Segregation of solute atoms to stacking faults. J Phys Society Japan 17, 322325.CrossRefGoogle Scholar
Van Espen, P. & Janssens, G. (1997). Imaging secondary ion mass spectrometry. In Handbook of Microscopy—Applications in Materials Science, Solid-State Physics and Chemistry. Volume 2: Methods II, Amelinckx, S., van Dyck, D., van Landuyt, J. & van Tendeloo, G. (Eds.), pp. 691716. Weinheim, Germany: Wiley-VCH Verlag GmbH.Google Scholar
Yakubtsov, I.A., Ariapour, A. & Perovic, D.D. (1999). Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys. Acta Mater 47, 12711279.CrossRefGoogle Scholar