Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T18:33:08.407Z Has data issue: false hasContentIssue false

A Multiscale Approach to Assess the Complex Surface of Polyurethane Catheters and the Effects of a New Plasma Decontamination Treatment on the Surface Properties

Published online by Cambridge University Press:  05 October 2010

Omar Mrad
Affiliation:
Université Paris-Sud 11, EA 401, IFR 141, Faculté de Pharmacie, F-92296 Châtenay Malabry, France
Johanna Saunier*
Affiliation:
Université Paris-Sud 11, EA 401, IFR 141, Faculté de Pharmacie, F-92296 Châtenay Malabry, France
Caroline Aymes-Chodur
Affiliation:
Université Paris-Sud 11, EA 401, IFR 141, Faculté de Pharmacie, F-92296 Châtenay Malabry, France
Véronique Rosilio
Affiliation:
Université Paris-Sud 11, UMR 8612, Faculté de Pharmacie, F-92296 Châtenay Malabry, France CNRS, UMR 8612, Faculté de Pharmacie, F-92296 Châtenay Malabry, France
Sylvie Bouttier
Affiliation:
Université Paris-Sud 11, EA 3534, Faculté de Pharmacie, F-92296 Châtenay Malabry, France
Florence Agnely
Affiliation:
Université Paris-Sud 11, UMR 8612, Faculté de Pharmacie, F-92296 Châtenay Malabry, France CNRS, UMR 8612, Faculté de Pharmacie, F-92296 Châtenay Malabry, France
Pascal Aubert
Affiliation:
Université Evry Val d'Essonne, LMN, F-91000 Evry, France
Jacky Vigneron
Affiliation:
Université Versailles, ILV CNRS UMR 8180, Institut Lavoisier de Versailles, F-78035 Versailles, France
Arnaud Etcheberry
Affiliation:
Université Versailles, ILV CNRS UMR 8180, Institut Lavoisier de Versailles, F-78035 Versailles, France
Najet Yagoubi
Affiliation:
Université Paris-Sud 11, EA 401, IFR 141, Faculté de Pharmacie, F-92296 Châtenay Malabry, France
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Polyurethane catheters made of Pellethane 2363-80AE® were treated with a low temperature plasma developed for the decontamination of reusable polymer devices in hospitals. We investigated the modifications of the polymer surface by studying the topographic modifications, the chemical modifications, and their consequences on the wettability and bacterial adhesion. This study showed that plasma treatment modified the topography and grafted oxygen and nitrogen species onto the surface, resulting in an increase in the surface polarity. This effect could be correlated to the number of nitrogen atoms interacting with the surface. Moreover, this study demonstrated the significance of multiscale heterogeneities, and the complexity of industrial medical devices made from polymers. Their surface can be heterogeneous, and they contain additives that can migrate and change the surface composition.

Type
Atomic Force Microscopy Biological Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

An, Y.H. & Friedman, R.J. (1998). Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43, 338348.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Anselme, K., Bigerelle, M., Noel, B., Dufresne, M., Judas, D., Iost, A. & Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 49, 155166.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Arefi-Khonsari, F., Tatoulian, M., Bretagnol, F., Bouloussa, O. & Rondelez, F. (2005). Processing of polymers by plasma technologies. Surf Coating Technol 200, 1420.CrossRefGoogle Scholar
Bandekar, J. & Sawyer, A. (1995). FTIR spectroscopy studies of polyurethanes: IV. Studies of the effect of the presence of processing aids on the hemocopatibility of polyurethanes. J Biomater Sci Polymer Edn 7(6), 485501.CrossRefGoogle Scholar
Boyd, R.D., Verran, J., Jones, M.V. & Bhakoo, M. (2002). Use of the atomic force microscopy to determine the effect of substratum surface topology on bacterial adhesion. Langmuir 18, 23432346.CrossRefGoogle Scholar
Briggs, D. & Beamson, G. (1992). Primary and secondary oxygen shift induced C1s binding energy shift in XPS of polymers. Anal Chem 64, 17291736.CrossRefGoogle Scholar
Briggs, D. & Beamson, G. (1993). XPS studies of the oxygen 1s and 2s in a wide range of functional polymer. Anal Chem 65, 15171523.CrossRefGoogle Scholar
Cassie, A.B.D. (1948). Contact angles. Discuss Faraday Soc 3, 1116.CrossRefGoogle Scholar
Cassie, A.B.D. & Baxter, S. (1944). Wettability of porous surfaces. Trans Faraday Soc 40, 546551.CrossRefGoogle Scholar
Choi, Y.H., Kim, J.H., Paek, K.H., Ju, W.T. & Hwang, Y.S. (2005). Characteristic of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification. Surf Coating Technol 193, 319324.CrossRefGoogle Scholar
Emerson, R.J., Bergstrom, T.S., Liu, Y.T., Soto, E.R., Brown, C.A., McGimpsey, W.G. & Camesano, T.A. (2006). Microscale correlation between surface chemistry, texture, and the adhesive strength of Staphylococcus epidermidis. Langmuir 22, 1113111321.CrossRefGoogle ScholarPubMed
Fromy, P., Pointu, A., Ganciu, M. & Orphal, J. (2006). transportation of nitrogen atoms in an atmospheric pressure post-discharge of pure nitrogen. J Phys D Appl Phys 39, 108112.CrossRefGoogle Scholar
Ganciu, M., Pointu, A., Orphal, J., Vervloët, M., Touzeau, M. & Yagoubi, N. (2007). CNRS, Université Paris Sud, U.S. Patent No. 7229589 B2.Google Scholar
Gerenser, L.J. (1993). XPS studies of in situ plasma modified polymer surfaces. J Adhesion Sci Technol 7(10), 10191040.CrossRefGoogle Scholar
Griesser, H.J. (1991). Degradation of polyurethane in biomedical application: A review. Polymer Degradation Stabil 33, 329354.CrossRefGoogle Scholar
Grythe, K.F. & Hansen, F.K. (2006). Surface modification of EPDM rubber by plasma treatment. Langmuir 22(14), 61096124.CrossRefGoogle ScholarPubMed
Inagaki, N., Narushima, K., Lim, S.K., Park, Y.W. & Ikeda, Y. (2002). Surface modification of ethylene-co-tetrafluoroethylene films by remote plasma. J Polymer Sci B 40, 28712882.CrossRefGoogle Scholar
Inagaki, N., Narushima, K., Tuchida, N. & Miyazaki, K. (2004). Surface characterization of plasma modified polyethylene terephtalate film surfaces. J Polymer Sci B 42, 37273740.CrossRefGoogle Scholar
Katsikogianni, M. & Missirlis, Y.F. (2004). Concise review of mechanisms of bacterial adhesion to iomaterials and of techniques used in estimating bacteria-material interactions. Eur Cells Mater 8, 3757.CrossRefGoogle ScholarPubMed
Kristinsson, K.G. (1989). Adherence of staphylococci to intravascular catheters. J Med Microbiol 28, 249257.CrossRefGoogle ScholarPubMed
Kwok, R. (2006). Freeware XPS peak 4.1. Available at www.box.net/public/z3yg1su81q.Google Scholar
Lampin, M., Warocquier-Clerout, R., Legris, C., Degrange, M. & Sigot-Luizard, M.F. (1997). Correlation between substratum roughness and wettability, cell adhesion and cell migration. J Biomed Mater Res 36, 99108.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Larbre, J., Ganciu, M., Pointu, A.M., Touzeau, M., Orphal, J. & Verloet, M. (2004). An atmospheric afterglow as source of flowing nitrogen atoms. International Workshop on Cold Atmospheric Pressure Plasmas: Sources and Application. Ghent, Belgium: CAPPSA.Google Scholar
Médard, N., Benninghoven, A., Rading, D., Licciardello, A., Auditore, A., Duc, T.M., Montigaud, H., Vernerey, F., Poleunis, C. & Bertrand, P. (2003). Antioxidant segregation and crystallisation at polyester surface studied by ToF SIMS. Appl Surf Sci 203-204, 571574.CrossRefGoogle Scholar
Mrad, O., Saunier, J., Aymes-Chodur, C., Agnely, F., Rosilio, V., Aubert, P., Vigneron, J., Etcheberry, A. & Yagoubi, N. (2010). A comparison of plasma and electron beam-sterilization of PU catheters. Rad Phys Chem 79, 93103.CrossRefGoogle Scholar
Mrad, O., Saunier, J., Aymes-Chodur, C., Agnely, F. & Yagoubi, N. (2009). Influence of electron beam sterilization on polymers when incubated in different media. J Appl Polym Sci 111(6), 31133120.CrossRefGoogle Scholar
Owens, D.K. & Wendt, R.C. (1969). Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8), 17411747.CrossRefGoogle Scholar
Pascual, A., Fleer, A., Westerdaal, A.C. & Verhoef, J. (1986). Modulation of adherence of coagulase-negative Staphylococci to Teflon catheters in vitro. Eur J Clin Microbiol 5, 518522.CrossRefGoogle ScholarPubMed
Pointu, A.M., Ricard, A., Dodet, B., Odic, E., Larbre, J. & Ganciu, M. (2005). Production of active species in N2-O2 flowing post-discharges at atmospheric pressure for sterilization. J Phys D Appl Phys 38, 19051909.CrossRefGoogle Scholar
Ratner, B.D. (1983). ESCA studies of extracted PU and PU extracts: Biomedical implications. In Physicochemical Aspects of Polymer Surfaces, Mittal, K.L. (Ed.), pp. 969983. New York: Plenum Publishing Corp.Google Scholar
Ratner, B.D., Briggs, D., Hearn, M.J., Yoon, S. & Edelman, P.G. (1988). ESCA and static SIMS studies of polyurethane surfaces. In Surface Characterization of Biomaterials, Ratner, B.D. (Ed.), pp. 317329. Amsterdam: Elsevier.Google Scholar
Sanchis, M.R., Calvo, O., Fenollar, O., Garcia, D. & Balart, R. (2008). Characterization of the surface changes and the aging effects of low pressure nitrogen plasma treatment in a polyurethane film. Polym Test 27, 7583.CrossRefGoogle Scholar
Sawyer, A., Bandekar, J. & Li, H. (1994). Examination of wax on surface of extruded pellethane by scanning electron microscopy attenuated total reflection infrared and X ray photoelectron spectroscopy and its importance in blood compatibility. J Vac Sci Technol A 12, 29662970.CrossRefGoogle Scholar
Shellenberger, K. & Logan, B.E. (2002). Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environ Sci Technol 36, 184189.CrossRefGoogle ScholarPubMed
Sousa, C., Teixeira, P. & Oliveira, R. (2009). Influence of surface properties on the adhesion of staphilococcus epidermidis to acrylic and silicon. Int J Biomater 2009, 19.CrossRefGoogle Scholar
Spatafore, R. & Pearson, L.T. (1991). Migration and blooming of stabilizing antioxidant in polypropylene. Polym Eng Sci 31, 16101617.CrossRefGoogle Scholar
Tang, H., Cao, T., Wang, A., Liang, X., Salley, S.O., McAllister, J.P. II & Ng, K.Y.S. (2007). Effect of surface modification of silicone on staphilococcus epidermidis adhesion and colonization. J Biomed Mater Res 80, 885894.CrossRefGoogle Scholar
Wagner, A.J., Fairbrother, D.H. & Reniers, F. (2003). A comparison of PE surfaces modified by plasma generated neutral nitrogen species and nitrogen ions. Plasmas Polym 8, 119134.CrossRefGoogle Scholar
Weibel, D.E., Vilani, L., Habert, A.C. & Achete, C.A. (2006). Surface modifications of polyurethane membranes using RF-plasma treatment with polymerizable and not polymerizable gases. Surf Coat Tech 201, 41904194.CrossRefGoogle Scholar
Wenzel, R.N. (1949). Surface roughness and contact angle. J Phys 53, 14661467.Google Scholar
Wilson, D.J., Rhodes, N.P. & Williams, R.L. (2003). Surface modification of a segmented polyetherurethane using a low-powered gas plasma and its influence on the activation of the coagulation system. Biomaterials 24(28), 50695081.CrossRefGoogle ScholarPubMed