Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T14:43:45.176Z Has data issue: false hasContentIssue false

Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles

Published online by Cambridge University Press:  30 July 2015

Sėan K. Mulligan
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA
Jeffrey A. Speir
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA
Ivan Razinkov
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA New York Structural Biology Center, New York, NY 10027, USA
Anchi Cheng
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA New York Structural Biology Center, New York, NY 10027, USA
John Crum
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA
Tilak Jain
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA
Erika Duggan
Affiliation:
Scintillon Institute, San Diego, CA 92121, USA
Er Liu
Affiliation:
La Jolla Bioengineering Institute, San Diego, CA 92121, USA
John P. Nolan
Affiliation:
Scintillon Institute, San Diego, CA 92121, USA
Bridget Carragher
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA New York Structural Biology Center, New York, NY 10027, USA
Clinton S. Potter*
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA New York Structural Biology Center, New York, NY 10027, USA
*
*Corresponding author.[email protected]
Get access

Abstract

We describe a system for rapidly screening hundreds of nanoparticle samples using transmission electron microscopy (TEM). The system uses a liquid handling robot to place up to 96 individual samples onto a single standard TEM grid at separate locations. The grid is then transferred into the TEM and automated software is used to acquire multiscale images of each sample. The images are then analyzed to extract metrics on the size, shape, and morphology of the nanoparticles. The system has been used to characterize plasmonically active nanomaterials.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Ali, M.R.K., Snyder, B. & El-Sayed, M.A (2012). Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 28(25), 98079815.Google Scholar
Alkilany, A.M., Lohse, S.E. & Murphy, C.J. (2013). The gold standard: Gold nanoparticle libraries to understand the nanobio interface. Acc Chem Res 46(3), 650661.Google Scholar
Castro-Hartmann, P., Heck, G., Eltit, J.M., Fawcett, P. & Samso, M. (2013). The ArrayGrid: A methodology for applying multiple samples to a single TEM specimen grid. Ultramicroscopy 135(December), 105112.Google Scholar
Cheng, A., Leung, A., Fellmann, D., Quispe, J., Suloway, C., Pulokas, J., Abeyrathne, P.D., Lam, J.S., Carragher, B. & Potter, C.S. (2007). Towards automated screening of two-dimensional crystals. J Struct Biol 160(3), 324331.Google Scholar
Coudray, N., Hermann, G., Caujolle-Bert, D., Karathanou, A., Erne-Brand, F., Buessler, J.-L., Daum, P., Plitzko, J.M., Chami, M., Mueller, U., Kihl, H., Urban, J.-P., Engel, A. & Rmigy, H.-W. (2011). Automated screening of 2D crystallization trials using transmission electron microscopy: A high-throughput tool-chain for sample preparation and microscopic analysis. J Struct Biol 173(2), 365374.Google Scholar
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. & Witten, T.A. (1997). Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(October), 827829.Google Scholar
Hu, M., Vink, M., Kim, C., Derr, K.D., Koss, J., D’Amico, K., Cheng, A., Pulokas, J., Ubarretxena-Belandia, I. & Stokes, D. (2010). Automated electron microscopy for evaluating two-dimensional crystallization of membrane proteins. J Struct Biol 171(1), 102110.CrossRefGoogle ScholarPubMed
Jain, T., Sheehan, P., Crum, J., Carragher, B. & Potter, C.S. (2012). Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J Struct Biol 179(1), 6875.CrossRefGoogle ScholarPubMed
Kamentsky, L., Jones, T.R., Fraser, A., Bray, M.-A., Logan, D.J., Madden, K.L., Ljosa, V., Rueden, C., Eliceiri, K.W. & Carpenter, A.E. (2011). Improved structure, function, and compatibility for CellProfiler: Modular high-throughput image analysis software. Bioinformatics 27(8), 11791180.CrossRefGoogle ScholarPubMed
Krafft, C. & Popp, J. (2015). The many facets of Raman spectroscopy for biomedical analysis. Anal Bioanal Chem 407(3), 699717.Google Scholar
Lohse, S.E. & Murphy, C.J. (2013). The quest for shape control: A history of gold nanorod synthesis. Chem Mater 25(8), 12501261.Google Scholar
Moon, H.R., Lim, D.-W. & Suh, M.P. (2013). Fabrication of metal nanoparticles in metalorganic frameworks. Chem Soc Rev 42(4), 18071824.CrossRefGoogle Scholar
Nolan, J.P., Duggan, E. & Condello, D. (2014). Optimization of SERS tag intensity, binding footprint, and emittance. Bioconjug Chem 25(7), 12331242.Google Scholar
Nolan, J.P., Duggan, E., Liu, E., Condello, D., Dave, Isha & Stoner, S.A (2012). Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods 57(3), 272279.Google Scholar
Orendorff, C.J., Gearheart, L., Jana, N.R. & Murphy, C.J. (2006). Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8(1), 165170.Google Scholar
Potter, C.S., Chu, H., Frey, B., Green, C., Kisseberth, N., Madden, T.J., Miller, K.L., Nahrstedt, K., Pulokas, J., Reilein, A., Tcheng, D., Weber, D. & Carragher, B. (1999). Leginon: A system for fully automated acquisition of 1000 electron micrographs a day. Ultramicroscopy 77(3–4), 153161.Google Scholar
Potter, C.S., Pulokas, J., Smith, P., Suloway, C. & Carragher, B. (2004). Robotic grid loading system for a transmission electron microscope. J Struct Biol 146(3), 431440.Google Scholar
Rao, C.N., Ramakrishna Matte, H.S., Voggu, R. & Govindaraj, A. (2012). Recent progress in the synthesis of inorganic nanoparticles. Dalton Trans 41(17), 50895120.Google Scholar
Rodriguez-Lorenzo, L., Fabris, L. & Alvarez-Puebla, R.A. (2012). Multiplex optical sensing with surface-enhanced Raman scattering: A critical review. Anal Chim Acta 745, 1023.CrossRefGoogle ScholarPubMed
Smith, D.K., Miller, N.R., Korgel, B.A. 2009). Iodide in CTAB prevents gold nanorod formation. Langmuir 25(16), 95189524.Google Scholar
Striemer, C.C., Gaborski, T.R., McGrath, J.L. & Fauchet, P.M. (2007). Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445(7129), 749753.Google Scholar
Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Potter, C.S., Carragher, B. (2005). Automated molecular microscopy: The new Leginon system. J Struct Biol 151(1), 4160.Google Scholar
Vo-Dinh, T., Fales, A.M., Griffin, G.D., Khoury, C.G., Liu, Y., Ngo, H., Norton, S.J., Register, J.K., Wang, H.-N. & Yuan, H. (2013). Plasmonic nanoprobes: From chemical sensing to medical diagnostics and therapy. Nanoscale 5(21), 1012710140.Google Scholar
Yunker, P.J., Still, T., Lohr, M.A. & Yodh, A.G. (2011). Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360), 308311.Google Scholar

Mulligan Supplementary Material

Supplementary Movie

Download Mulligan Supplementary Material(Video)
Video 1.6 MB