Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T05:32:16.384Z Has data issue: false hasContentIssue false

Morphological and Histochemical Characterization of the Dermal Plates of Pleco (Hypostomus plecostomus)

Published online by Cambridge University Press:  19 May 2020

Soha A. Soliman
Affiliation:
Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena83523, Egypt
Basma Mohamed Kamal
Affiliation:
Anatomy and Embryology Department, Faculty of Veterinary Medicine, Sadat City University, Sadat City, Egypt
Alaa S. Abuo-Elhmad
Affiliation:
Anatomy, Embryology and Histology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt Department of Respiratory Care, Faculty of Medical Applied Sciences, Jazan University, Saudi Arabia
Hanan H. Abd-Elhafeez*
Affiliation:
Anatomy, Embryology and Histology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
*
*Author for correspondence: Hanan H. Abd-Elhafeez, E-mail: [email protected]
Get access

Abstract

Studying the dermal skeleton in fish is valuable for phylogenetic specification. The current study describes the detailed structure of the plecostomus dermal skeleton, including its morphogenesis and distribution in the skin. The denticles have a crown and a basal part and are embedded in bony depressions, to which they are attached by denticle ligaments. During denticle morphogenesis, denticle papillae formed from denticle precursor cells align in two cellular layers: an outer ameloblast precursor layer and an inner odontoblast precursor layer. The ameloblast precursors and odontoblast precursors differentiate and secrete enamel and dentine, respectively. We used different histochemical techniques, including Crossmon's trichrome staining, Weigert–Van Gieson staining, periodic acid–Schiff (PAS) staining, combined Alcian blue (AB; pH 2.5)/PAS staining, Weigert–Van Gieson staining, Mallory trichrome staining, and AB staining to distinguish the dentine and denticle ligaments. We used acridine orange to detect lysosome activity during denticle eruption. Transmission electron microscopy was used to detect the denticle ultrastructure, and scanning electron microscopy was used to detect the topographic distributions of different types of dermal tissues in different anatomical regions.

Type
Micrographia
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd-Elhafeez, HH & Soliman, SA (2016). Origin of rodlet cells and mapping their distribution in ruby-red-fin shark (rainbow shark) Epalzeorhynchos frenatum (Teleostei: Cyprinidae): Light, immunohistochemistry and ultrastructure study. J Cytol Histol 7, 435.Google Scholar
Abd-Elhafeez, HH & Soliman, SA (2017). New description of telocyte sheaths in the bovine uterine tube: An immunohistochemical and scanning microscopic study. Cells Tissues Organs 203(5), 295315.CrossRefGoogle ScholarPubMed
Abdel-Hakeem, SS, Mahmoud, GAE & Abdel-Hafeez, HH (2019). Evaluation and microanalysis of parasitic and bacterial agents of Egyptian fresh Sushi, Salmo salar.Microsc Microanal 25(6), 14981508.CrossRefGoogle ScholarPubMed
Abd-Elkareem, M (2017). Cell-specific immuno-localization of progesterone receptor alpha in the rabbit ovary during pregnancy and after parturition. Anim Reprod Sci 180, 100120.CrossRefGoogle ScholarPubMed
Abdel-Maksoud, FM, Abd-Elhafeez, HH & Soliman, SA (2019). Morphological changes of telocytes in camel efferent ductules in response to seasonal variations during the reproductive cycle. Sci Rep 9(1), 117.CrossRefGoogle ScholarPubMed
Armbruster, JW (2004). Phylogenetic relationships of the suckermouth armoured catfishes (Loricariidae) with emphasis on the Hypostominae and the Ancistrinae. Zool J Linnean Soc 141(1), 180.CrossRefGoogle Scholar
Cramer, CA (2009). Phylogeny of two subfamilies of armoured catfish (Siluriformes, Loricariidae) using nuclear and mitochondrial DNA and morphological data. PhD Thesis, Brazil, for: Dr. Advisor: Roberto Esser Reis. doi: 10.13140/2.1.2655.5527CrossRefGoogle Scholar
Crossmon, G (1937). A modification of Mallory's connective tissue stain with discussion of the principle involved. Anat Rec 69(1), 3338.CrossRefGoogle Scholar
Donoghue, PCJ (2002). Evolution of development of the vertebrate dermal and oral skeletons: Unraveling concepts, regulatory theories, and homologies. Paleobiology 28(4), 474507.2.0.CO;2>CrossRefGoogle Scholar
Ebenstein, D, Calderon, C, Troncoso, OP & Torres, FG (2015). Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure. J Mech Behav Biomed Mater 45, 175182.CrossRefGoogle ScholarPubMed
Edmunds, RC, Su, B, Balhoff, JP, Eames, BF, Dahdul, WM, Lapp, H, Lundberg, JG, Vision, TJ, Dunham, RA, Mabee, PM & Westerfield, M (2015). Phenoscape: Identifying candidate genes for evolutionary phenotypes. Mol Biol Evol 33(1), 1324.CrossRefGoogle ScholarPubMed
El-Desoky, SMM & Mustafa, FE-ZA (2019). Histological and histochemical studies on the oviduct microcirculation of the laying Japanese quail (Coturnix japonica). Anat Histol Embryol 48(4), 346357.CrossRefGoogle Scholar
Fatma El-Zahraa, AM & Abd-Elhafez, EA (2018). A histological, histochemical and ultrastructural characterization of uterine vessels at early stages of pregnancy. J Histol Histopathol Res 2(2), 4147.Google Scholar
Gabe, M & Gabe, M (1976). Histological Techniques, p. 95. Paris: Masson.CrossRefGoogle Scholar
Garg, TK, Domingos, FXV, Almeida-Val, VMF & Val, AL (2010). Histochemistry and functional organization of the dorsal skin of Ancistrus dolichopterus (Siluriformes: Loricariidae). Neotrop Ichthyol 8(4), 877884.CrossRefGoogle Scholar
Gray, P (1954). The Microtomist's Formulary and Guide, 3rd ed. New York, NY: The Blakiston Company.Google Scholar
Grimelius, L (1968). A silver nitrate stain for alpha-2 cells in human pancreatic islets. Acta Soc Med Ups 735(5–6), 243270.Google Scholar
Gross, CA, Reddy, CK & Dazzo, FB (2010). CMEIAS color segmentation: An improved computing technology to process color images for quantitative microbial ecology studies at single-cell resolution. Microb Ecol 59(2), 400414.CrossRefGoogle ScholarPubMed
Harris, HF (1900). The haematoxylins. In Theory and Practice of Histological Techniques, Bancroft, JD & Stevens, A (Eds.),Churchill Livingstone, Edinburgh, pp. 405415.Google Scholar
Hoff, RG, Newman, DE & Staneck, JL (1985). Bacteriuria screening by use of acridine orange-stained smears. J Clin Microbiol 21(4), 513516.CrossRefGoogle ScholarPubMed
Karnovsky, MJ (1965). A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27, 137A138A.Google Scholar
Linde, A & Goldberg, M (1993). Dentinogenesis. Crit Rev Oral Biol Med 4(5), 679728.CrossRefGoogle ScholarPubMed
Liu, Z, Liu, S, Yao, J, Bao, L, Zhang, J, Li, Y, Jiang, C, Sun, L, Wang, R, Zhang, Y & Zhou, T (2016). The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 7(1), 113.Google ScholarPubMed
Mahmoud, MAM, Zaki, RS & Abd-Elhafeez, HH (2020). An epifluorescence-based technique accelerates risk assessment of aggregated bacterial communities in carcass and environment. Environ Pollut 260, page number: 113950.CrossRefGoogle ScholarPubMed
Mallory, FB (1936). A staining method for mucoids and some other substances in tissues. Stain Technol 11, 101.CrossRefGoogle Scholar
McManus, JFA (1948). Histological and histochemical uses of periodic acid. Stain Technol 23(3), 99108.CrossRefGoogle ScholarPubMed
Miyake, T, Vaglia, JL, Taylor, LH & Hall, BK (1999). Development of dermal denticles in skates (Chondrichthyes, Batoidea): Patterning and cellular differentiation. J Morphol 241(1), 6181.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Miyauchi, Y, Mayahara, M, Sasa, R, Inoue, M & Nakamura, M (2010). Localization and phenotype of resident macrophages in the dental pulp during rat mandibular first molar development. Dent Med Res 30(1), 1521.CrossRefGoogle Scholar
Mohamed, GK, Selim, AA, Abdelhafeez, HH & Mohamed, MB (2017). Histomorphological developmental studies of the left ovary in the Japanese quail (Coturnix Coturnix Japonica). Mathew J Cytol Histol 1(1), 002.Google Scholar
Mowry, RW (1956). Alcian blue technics for the histochemical study of Alcian carbohydrates. J Histochem Cytochem 4, 407411.Google Scholar
Mustafa, FE-ZA (2019). Putative primo-vascular system in rabbit placenta. J Acupunct Meridian Stud 12(1), 2024.CrossRefGoogle ScholarPubMed
Nelson, JS (2006). Fishes of the World, 4th ed.Hoboken: John Wiley & Sons, 601 p.Google Scholar
Pashley, DH (2013). How can sensitive dentine become hypersensitive and can it be reversed? J Dent 41(Suppl 4), S49S55.CrossRefGoogle ScholarPubMed
Pereira, EH & Reis, RE (2017). Morphology-based phylogeny of the suckermouth armored catfishes, with emphasis on the Neoplecostominae (Teleostei: Siluriformes: Loricariidae). Zootaxa 4264(1), 1104.CrossRefGoogle Scholar
Pierzyńska-Mach, A, Janowski, PA & Dobrucki, JW (2014). Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles. Cytometry A 85(8), 729737.CrossRefGoogle ScholarPubMed
Regan, J & Long, F (2013). Notch signaling and bone remodeling. Curr Osteoporos Rep 11(2), 126129.CrossRefGoogle ScholarPubMed
Reynolds, EG (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17(1), 208212.CrossRefGoogle ScholarPubMed
Roxo, FF, Albert, JS, Silva, GS, Zawadzki, CH, Foresti, F & Oliveira, C (2014). Molecular phylogeny and biogeographic history of the armored Neotropical catfish subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae). PLoS One 9, 8.CrossRefGoogle Scholar
Schaefer, SA (2009). Relationships of Lithogenes villosus Eigenmann, 1909 (Siluriformes, Loricariidae): Evidence from high-resolution computed microtomography. Am Mus Novit 2003(3401), 155.Google Scholar
Sire, JY & Huysseune, ANN (2003). Formation of dermal skeletal and dental tissues in fish: A comparative and evolutionary approach. Biol Rev 78(2), 219249.CrossRefGoogle ScholarPubMed
Sire, JY & Meunier, FJ (1993). Superficial ornamentation and structure of osseous dermal plates in some armored Siluriformes (Loricariidae, Callichthyidae, Doradidae). Ann Des Sci Nat Zool Paris 14(3), 101123.Google Scholar
Soha Soliman, A, Hanan Hassan, A & Enas, A (2017). A new mechanism of cartilage growth in mammals “involvement of CD117 positive undifferentiated cells in interstitial growth”. Mathew J Cytol and Histol 1(1), 001.Google Scholar
Soliman, AS (2018 b). The growth cartilage and beyond: Absence of medullary bone in silver carp ribs. Mathew J Cytol and Histol 2(1), 008.Google Scholar
Soliman, S (2017 a). Potential role of telocytes in differentiation of embryonic skeletal progenitor cells. SF J Stem Cell 1(1).Google Scholar
Soliman, S (2017 b). Potential role of telocytes in development of embryonic Ganglia. SF J Stem Cell 1(1).Google Scholar
Soliman, S (2018 a). Mesenchymal chondroprogenitors during cartilage growth and renewal. SF J Stem Cell 1(2), 412.Google Scholar
Soliman, SA (2019 a). Morphological and histochemical description of quail feather development. Anat Rec.doi.org/10,1002/ar.24276Google ScholarPubMed
Soliman, SA (2019 b). Identification of Merkel receptors sheet in quail beak. Cytol Histol Int J 3(1), 000107.Google Scholar
Soliman, SA & Abd-Elhafeez, HH (2016 a). Are C-KIT, MMP-9 and type II collagen positive undifferentiated cells involved in cartilage growth? A description of unusual interstitial type of cartilage growth. J Cytol Histol 7, 440.CrossRefGoogle Scholar
Soliman, SA & Abd-Elhafeez, HH (2016 b). Mesenchymal cells in cartilage growth and regeneration “an immunohistochemical and electron microscopic study". J Cytol Histol 7, 437.Google Scholar
Soliman, SA & Abd-Elhafeez, HH (2018). Organization and pattering of mesenchymal cells in quail embryonic cartilage. SF J Stem Cell 1, 1.Google Scholar
Soliman, SA, Ahmed, YA & Abdelsabour-Khalaf, M (2016). Histogenesis of the stomach of the pre-hatching quail: A light microscopic study. Anat Sci Int 91(4), 407418.CrossRefGoogle ScholarPubMed
Soliman, S & Emeish, W (2017). Morphological alternations of intraepithelial and stromal telocytes in response to salinity challenges. bioRxiv, 115881.Google Scholar
Soliman, SA, Kamal, BM & Abd-Elhafeez, HH (2019). Cellular invasion and matrix degradation, a different type of matrix-degrading cells in the cartilage of catfish (Clarias gariepinus) and Japanese quail embryos (Coturnix coturnix japonica). Microsc Microanal 25(5), 12831292.CrossRefGoogle Scholar
Soliman, SA & Madkour, FA (2017). A comparative analysis of the organization of the sensory units in the beak of duck and quail. Histol Cytol Embryol 1(4), 116.Google Scholar
Suvarna, KS, Layton, C & Bancroft, JD (2013). Bancroft's Theory and Practice of Histological Techniques. Edinburg, London, Melbourne: Churchill Living Stone.Google Scholar
Van Gieson, J (1889). Laboratory notes of technical methods for the nervous system. NY Med J 50, 5760.Google Scholar
Vickaryous, MK & Sire, JY (2009). The integumentary skeleton of tetrapods: Origin, evolution, and development. J Anat 214(4), 441464.CrossRefGoogle ScholarPubMed
Weber, C, Covain, R & Fisch-Muller, S (2012). Identity of Hypostomus plecostomus (Linnaeus, 1758), with an overview of Hypostomus species from the Guianas (Teleostei: Siluriformes: Loricariidae). Cybium 36(1), 195227.Google Scholar
Weigert, C (1898). Uber eine methode zur farbung elastischer fasern. Zentralbl Allg Pathol Anat 9, 289292.Google Scholar
Yousef, MS, Abd-Elhafeez, HH, Talukder, AK & Miyamoto, A (2019). Ovulatory follicular fluid induces sperm phagocytosis by neutrophils, but oviductal fluid around oestrus suppresses its inflammatory effect in the buffalo oviduct in vitro. Mol Reprod Dev 86(7), 835846.CrossRefGoogle ScholarPubMed
Ziemniczak, K, Barros, AV, Rosa, KO, Nogaroto, V, Almeida, MC, Cestari, MM & Vicari, MR (2012). Comparative cytogenetics of Loricariidae (Actinopterygii: Siluriformes): Emphasis in Neoplecostominae and Hypoptopomatinae. Ital J Zool 79(4), 492501.CrossRefGoogle Scholar
Supplementary material: Image

Soliman et al. supplementary material

Soliman et al. supplementary material

Download Soliman et al. supplementary material(Image)
Image 3.2 MB