Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T06:26:45.937Z Has data issue: false hasContentIssue false

Morphological and Histochemical Characterization of Gill Filaments of the Brazilian Endemic Bivalve Diplodon expansus (Küster, 1856) (Mollusca, Bivalvia, Hyriidae)

Published online by Cambridge University Press:  29 November 2012

Larissa Rosa Nogarol
Affiliation:
UNESP, São Paulo State University, Av. 24A, nº 1515, CEP 13506-900, Rio Claro, SP, Brazil
Ana Luiza Brossi-Garcia
Affiliation:
UNESP, São Paulo State University, Av. 24A, nº 1515, CEP 13506-900, Rio Claro, SP, Brazil
José Augusto de Oliveira David
Affiliation:
UFES, Federal University of Espírito Santo, Alto Universitário, s/nº, CEP 29500-000, Alegre, ES, Brazil
Carmem Silvia Fontanetti*
Affiliation:
UNESP, São Paulo State University, Av. 24A, nº 1515, CEP 13506-900, Rio Claro, SP, Brazil
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

This study presents the morphological description and histochemical characterization of gill filaments of the Brazilian endemic bivalve Diplodon expansus, aiming to broaden the morphological knowledge of this species and establish the structure of the gills that will serve as control in histopathological studies applied to biomonitoring. The gill filaments are divided into three zones: frontal, intermediate, and abfrontal. In the center of the filament, haemocytes circulate through the haemolymph vessel, which is internally lined by endothelium. The frontal surface of the filament is covered with cilia, the lateral surface exhibits aquifer ducts, and the abfrontal surface presents ciliated and nonciliated cells. The epithelium of the filaments is composed of ciliated cells, nonciliated absorptive cells, and mucocytes. The support of the filaments is made by two specialized structures called skeletal rod and skeletal loop. Based on the obtained information, the gill filaments of the studied species present some peculiar characteristics that are not yet reported in detail in the literature such as the simultaneous presence of skeletal rod and skeletal loop. On the other hand, the general constitution of the filament is similar to that described for both marine and limnic bivalves and seems to be suitable for ecotoxicological studies.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alyakrinskaya, I.O. (2003). Tissue hemoglobins in Bivalvia (Mollusca). Biol Bull 30, 617626.Google Scholar
Atkins, D. (1936). On the ciliary mechanisms and interrelationships of lamellibranchs. I. New observations on sorting mechanisms. Q J Microsc Sci 79, 181308.Google Scholar
Avelar, W.E.P. (1999). Moluscos bivalves. In Biodiversidade do Estado de São Paulo, Brasil: Invertebrados de água doce, Ismael, D., Valentin, W.C., Matsumara-Tundisi, T. & Rocha, O. (Eds.), pp. 6568. São Paulo, Brazil: Fundação de Amparo à pesquisa do Estado de São Paulo (FAPESP).Google Scholar
Avelar, W.E.P. & Cunha, A.D. (2009). The anatomy and functional morphology of Diplodon rhombeus fontainianus (Orbigny, 1835) (Mollusca, Bivalvia, Hyriidae). Braz J Biol 69, 11531163.Google Scholar
Beninger, P.G., Dufour, S.C. & Bourque, J. (1997). Particle processing mechanisms of the eulamellibranch bivalves Spisula solidissima and Mya arenaria . Mar Ecol Prog Ser 150, 157169.Google Scholar
Colville, A.E. & Lim, R.P. (2003). Microscopic structure of the mantle and palps in the freshwater mussels Velesunio ambiguus and Hyridella depressa (Bivalvia: Hyriidae). Mollusc Res 23, 120.Google Scholar
Curial, O. & Lange, R.R. (1974a). Hermafroditismo em Diplodon deloduntus expansus . Arq Biol Tecnol 17, 109110.Google Scholar
Curial, O. & Lange, R.R. (1974b). Observações sobre a proporção de sexos em Diplodon delodontus expansus . Arq Biol Tecnol 17, 111112.Google Scholar
Curial, O. & Lange, R.R. (1975). Variações histológicas sazonais das gônadas do Diplodon delodontus expansus (Küster) (Mollusca, Unionidade). Arq Biol Tecnol 18, 6567.Google Scholar
David, J.A.O. & Fontanetti, C.S. (2005). Surface morphology of Mytella falcata gill filaments from three regions of the Santos estuary. Braz J Morphol Sci 22, 203210.Google Scholar
David, J.A.O. & Fontanetti, C.S. (2009). The role of mucus in Mytella falcata (Orbigny, 1842) gills from polluted environments. Water Air Soil Pollut 203, 261266.Google Scholar
David, J.A.O., Salaroli, R.B. & Fontanetti, C.S. (2008). Fine structure of Mytella falcata (Bivalvia) gill filaments. Micron 39, 329336.Google Scholar
Dufour, S.C. & Beninger, P.G. (2001). A functional interpretation of cilia and mucocyte distributions on the abfrontal surface of bivalve gills. Mar Biol 138, 295309.CrossRefGoogle Scholar
Faillard, H. & Schauer, R. (1972). Glycoproteins as lubrificans, protective agents, carries, structural proteins and as participants in other functions. In Glycoproteins. Their Composition, Structure and Function, Gottschalk, A. (Ed.), pp. 12461267. Amsterdam: Elsevier.Google Scholar
Gómez-Mendikute, A., Elizondo, M., Venier, P. & Cajaraville, M.P. (2005). Characterization of mussel gill cells in vivo and in vitro . Cell Tissue Res 321, 131140.Google Scholar
Gregory, M.A. & George, R.C. (2000). The structure and surface morphology of the gill filaments in the brown mussel Perna perna . Afr Zool 35, 121129.Google Scholar
Gregory, M.A., George, R.C. & McClurg, T.P. (1996). The architecture and fine structure of gill filaments in the brown mussel Perna perna . S Afr J Zool 31, 193206.Google Scholar
Gregory, M.A., Marshall, D.J., George, R.C., Anandraj, A. & McClurg, T.P. (2002). Correlations between metal uptake in the soft tissue of Perna perna and gill filament pathology after exposure to mercury. Mar Pollut Bull 45, 114125.Google Scholar
Hebling, N.J. & Penteado, A.M.G. (1974). Anatomia functional de Diplodon rotundus gratus Wagner, 1827 (Mollusca, Bivalvia). Rev Brasil Biol 34, 6780.Google Scholar
Henry, R. & Filoso, S. (1985). Spatial distribution of a bivalve population (Diplodon delodontus expansus) (Küster, 1856) in a small tropical reservoir. Rev Brasil Biol 45, 407415.Google Scholar
Henry, R. & Filoso, S. (1987). Nutrient release through decomposition of Diplodon delodontus expansus (Mollusca, Bivalvia) and some considerations of its effects on the ecology of a small tropical reservoir. Rev Brasil Biol 47, 479486.Google Scholar
Henry, R. & Simão, S.A. (1984). Evaluation of density and biomass of a bivalve population (Diplodon delodontus expansus) (Küster, 1856) in a small tropical reservoir. Rev D Hydrobiol Trocale 17, 309318.Google Scholar
Hunt, S. (1970). Polysaccharides-Protein Complexes in Invertebrates. London: Academic Press.Google Scholar
Jorgensen, C.B. (1976). Comparative studies on the function of gills in suspension feeding bivalves, with special reference to effects of serotonin. Biol Bull 151, 331343.CrossRefGoogle Scholar
Junqueira, L.C.U. & Junqueira, M.M.S. (1983). Técnicas Básicas de Citologia e Histologia. São Paulo, Brazil: Livraria Editora Santos.Google Scholar
Kale, G.S. & Patil, V.Y. (1977). Histochemical studies on the mucosubstances in the gill of freshwater mussels, Parreysia corrugata var. nagpoorensis (Lea). Acta Histochem 59, 17.Google Scholar
Karnovsky, M.J. (1965). A formaldehyde-glutaraldehyde fixative at high osmolarity for use in electron microscopy. J Cell Biol 11, 137140.Google Scholar
Lemaire-Gony, S. & Boudou, A. (1997). Mantle and gill fine structure in freshwater Asiatic clam Corbicula fluminea (Müller). Ann Limnol 33, 163178.Google Scholar
Mansur, M.C.D. (1999). Gloquídio de Diplodon martensi (Ihering) (Mollusca, Bivalvia, Hyriidae) e seu ciclo parasitário. Rev Bras Zool 16, 185194.Google Scholar
Mansur, M.C.D. & Santos, C.P. (2008). Invertebrados aquáticos: Diplodon expansus . In Livro Vermelho da Fauna Ameaçada de Extinção, Machado, A.B.M., Drummond, G.M. & Paglia, A.P. (Eds.), pp. 197198. Belo Horizonte, Brazil: Fundação Bioversitas.Google Scholar
Mantecca, P., Vailati, G. & Bacchetta, R. (2006). Histological changes and micronucleous inductions in the Zebra mussel Dreissena polymorpha after Paraquat exposure. Histol Histopathol 21, 829840.Google Scholar
Nakao, T. (1975). The fine structure and innervation of gill lamellae in Anodonta . Cell Tiss Res 157, 239254.Google Scholar
Pearse, A.G.E. (1985). Histochemistry: Theoretical and Applied. Edinburgh, UK: Churchill Livingstone.Google Scholar
Peltier, G.L., Meyer, J.L., Jagoe, C.H., William, A. & Hopkins, W.A. (2008). Using trace element concentrations in Corbicula fluminea to identify potential sources of contamination in an urban river. Environ Pollut 154, 283290.CrossRefGoogle Scholar
Silverman, H., Lynn, J.W. & Dietz, T.H. (2000). In vitro studies of particle capture and transport in suspension-feeding bivalves. Limnol Oceanogr 45, 11991203.CrossRefGoogle Scholar
Vilela, I.V., Oliveira, I.M., Silva, J. & Henriques, J.A.P. (2006). DNA damage and repair in haemolynph cells of golden mussel (Limnoperna fortunei) exposed to environmental contaminants. Mutat Res 605, 7886.Google Scholar
Villar, C., Stripeikis, J., D'Huicque, L., Tudino, M., Troccoli, O. & Bonetto, C. (1999). Cd, Cu, and Zn concentrations in sediments and the invasive bivalves Limnoperna fortunei and Corbicula fluminea at the Rio de La Plata basin, Argentina. Hydrobiologia 416, 4149.Google Scholar
Zupan, I. & Kalafatic, M. (2003). Histological effects of low atrazine contamination on Zebra Mussel (Dreissena polymorpha Pallas). Bull Environ Contam Toxicol 70, 688695.Google Scholar