Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T02:51:16.912Z Has data issue: false hasContentIssue false

Morphological and Chemical Comparative Analysis of The Human and Bovine Dentin–Adhesive Layer

Published online by Cambridge University Press:  01 December 2014

Luís Eduardo Silva Soares*
Affiliation:
Department of Dental Materials and Operative Dentistry, School of Dentistry, University of Vale do Paraíba, UNIVAP, São José dos Campos, SP 12.244-000, Brazil Laboratory of Biomedical Vibrational Spectroscopy, Research and Development Institute, IP&D, University of Vale do Paraíba, UNIVAP, São José dos Campos, SP 12.244-000, Brazil
Ana Maria do Espírito Santo
Affiliation:
Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, UNIFESP, Diadema, São Paulo 09972-270, Brazil
*
*Corresponding author. [email protected]
Get access

Abstract

Micro energy-dispersive X-ray fluorescence spectrometry (µ-EDXRF) and scanning electron microscopy (SEM) were used to evaluate dentin treated with an etch and rinse adhesive (ER) and a self-etch adhesive (SE). Ten human molars (H) and ten bovine anterior teeth (B) were prepared (exposure of dentin and divided in the middle) and allocated into two different adhesion strategy groups per substrate (n=40). µ-EDXRF data and SEM images were obtained before and after treatment. Untreated dentin of both substrates did not differ in terms of Ca (p<0.1503), P (p<0.2986) or Ca/P ratio (p<0.1400). H-SE and B-SE specimens showed reduced P content (p<0.0001; p<0.0002), while H-ER and B-ER specimens showed reduced Ca and P content (p<0.0001; p<0.0001) when compared with untreated specimens. The Ca/P ratio was significantly higher in H-ER and B-ER specimens than in H-SE and B-SE specimens (p<0.0001; p<0.0080). Untreated dentin showed a homogeneous elemental distribution. However, after adhesive treatments, the surface of the dentin showed an irregular demineralization pattern. The resin tags and adhesive layer were shorter in bovine specimens than in human specimens due to morphological differences.

Type
Biological and Biomaterials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalla, A.I. (2004). Microtensile and tensile bond strength of single-bottle adhesives: A new test method. J Oral Rehabil 31, 379384.Google Scholar
Almeida, K.G.B., Scheibe, K.G.B.A, Oliveira, A.E.F., Alves, C.M.C. & Costa, J.F. (2009). Influence of human and bovine substrate on the microleakage of two adhesive systems. J Appl Oral Sci 17, 9296.Google Scholar
Camargo, M.A., Roda, M.I., Marques, M.M. & de Cara, A.A. (2008). Micro-tensile bond strength to bovine sclerotic dentine: Influence of surface treatment. J Dent 36, 922927.Google Scholar
De Barceleiro, M.O., Dias, K.R., Sales, H.X., Silva, B.C. & Barceleiro, C.G. (2008). SEM evaluation of the hybrid layer after cavity preparation with Er:YAG laser. Oper Dent 33, 294304.Google Scholar
De Carvalho Filho, A.C.B., Sanches, R.P., Martin, A.A., Santo, A.M.E. & Soares, L.E.S. (2011). Energy dispersive X-ray spectrometry study of the protective effects of fluoride varnish and gel on enamel erosion. Microsc Res Tech 74, 839844.CrossRefGoogle ScholarPubMed
De Carvalho, F.G., Puppin-Rontani, R.M., Soares, L.E.S., Santo, A.M.E., Martin, A.A. & Nociti-Junior, F.H. (2009). Mineral distribution and CLSM analysis of secondary caries inhibition by fluoride/MDPB-containing adhesive system after cariogenic challenges. J Dent 37, 307314.Google Scholar
Dutra-Correa, M., Anauate-Netto, C. & Arana-Chavez, V.E. (2007). Density and diameter of dentinal tubules in etched and non-etched bovine dentine examined by scanning electron microscopy. Arch Oral Biol 52, 850855.CrossRefGoogle ScholarPubMed
Falla-Sotelo, F.O., Rizzutto, M.A., Tabacniks, M.H., Added, N. & Barbosa, M.D.L. (2005). Analysis and discussion of trace elements in teeth of different animal species. Br J Phys 35, 761762.Google Scholar
Ferrari, M., Mannocci, F., Kugel, G. & García-Godoy, F. (1999). Standardized microscopic evaluation of the bonding mechanism of NRC/Prime & Bond NT. Am J Dent 12, 7783.Google Scholar
Fonseca, R.B., Haiter-Neto, F., Fernandes-Neto, A.J., Barbosa, G.A. & Soares, C.J. (2004). Radiodensity of enamel and dentin of human, bovine and swine teeth. Arch Oral Biol 49, 919922.CrossRefGoogle ScholarPubMed
Grégoire, G., Guignes, P. & Nasr, K. (2009). Effects of dentine moisture on the permeability of total-etch and one-step self-etch adhesives. J Dent 37, 691699.Google Scholar
Hashimoto, M., De Munck, J., Ito, S., Sano, H., Kaga, M., Oguchi, H., Van Meerbeek, B. & Pashley, D.H. (2004). In vitro effect of nanoleakage expression on resin-dentin bond strengths analyzed by microtensile bond test, SEM/EDX and TEM. Biomaterials 25, 55655574.CrossRefGoogle ScholarPubMed
Helvatjoglu-Antoniades, M., Koliniotou-Kubia, E. & Dionyssopoulos, P. (2004). The effect of thermal cycling on the bovine dentine shear bond strength of current adhesive systems. J Oral Rehabil 31, 911917.Google Scholar
Iida, Y., Nikaido, T., Kitayama, S., Takagaki, T., Inoue, G., Ikeda, M., Foxton, R.M. & Tagami, J. (2009). Evaluation of dentin bonding performance and acid-base resistance of the interface of two-step self-etching adhesive systems. Dent Mater J 28, 493500.CrossRefGoogle ScholarPubMed
Ikemura, K., Tay, F.R., Hironaka, T., Endo, T. & Pashley, D.H. (2003). Bonding mechanism and ultrastructural interfacial analysis of a single-step adhesive to dentin. Dent Mater 19, 707715.Google Scholar
Loguercio, A.D., Stanislawczuk, R., Mena-Serrano, A. & Reis, A. (2011). Effect of 3-year water storage on the performance of one-step self-etch adhesives applied actively on dentine. J Dent 39, 578587.Google Scholar
Lopes, M.B., Sinhoreti, M.A.C., Gonini Júnior, A., Consani, S. & McCabe, J.F. (2009). Comparative study of tubular diameter and quantity for human and bovine dentin at different depths. Braz Dent J 20, 279283.Google Scholar
Malkoc, M.A., Taşdemir, S.T., Ozturk, A.N., Ozturk, B. & Berk, G. (2011). Effects of laser and acid etching and air abrasion on mineral content of dentin. Lasers Med Sci 26, 2127.Google Scholar
Nayif, M.M., Shimada, Y., Ichinose, S. & Tagami, J. (2010). Nanoleakage of current self-etch adhesives bonded to artificial carious dentin. Am J Dent 23, 279284.Google ScholarPubMed
Ozer, F., Unlu, N. & Sengun, A. (2003). Influence of dentinal regions on bond strengths of different adhesive systems. J Oral Rehabil 30, 659663.CrossRefGoogle ScholarPubMed
Pascon, F.M., Kantovitz, K.R., Soares, L.E.S., Santo, A.M.E., Martin, A.A. & Puppin-Rontani, R.M. (2012). Morphological and chemical changes in dentin after using endodontic agents: Fourier transform raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study. J Biomed Opt 17, 075008-1075008-6.Google Scholar
Rüttermann, S., Braun, A. & Janda, R. (2013). Shear bond strength and fracture analysis of human vs. bovine teeth. PLoS One 8, e59181.Google Scholar
Sato, M. & Miyazaki, M. (2005). Comparison of depth of dentin etching and resin infiltration with single-step adhesive systems. J Dent 33, 475484.Google Scholar
Sauro, S., Pashley, D.H., Mannocci, F., Tay, F.R., Pilecki, P., Sherriff, M. & Watson, T.F. (2008). Micropermeability of current self-etching and etch-and-rinse adhesives bonded to deep dentine: A comparison study using a doublestaining/confocal microscopy technique. Eur J Oral Sci 116, 184193.Google Scholar
Soares, L.E.S., Campos, A.D.F. & Martin, A.A. (2013 a). Human and bovine dentin composition and its hybridization mechanism assessed by FT-Raman spectroscopy. J Spectrosc 2013, Article ID 210671, 7pp. doi:10.1155/2013/210671.Google Scholar
Soares, L.E.S., Martin, O.C.L., Moryiama, L.T., Kurachi, C. & Martin, A.A. (2013 b). Relationship between the chemical and morphological characteristics of human dentin after Er:YAG laser irradiation. J Biomed Opt 18, 068001-1068001-7.Google Scholar
Soares, L.E.S., Santo, A.M.E., Brugnera Junior, A., Zanin, F.A.A. & Martin, A.A. (2009). Effects of Er:YAG laser irradiation and manipulation treatments on dentin components, part 2: Energy-dispersive X-ray fluorescence spectrometry study. J Biomed Opt 14, 024002-1024002-7.Google Scholar
Soares, L.E.S., Santo, A.M.E., Brugnera Junior, A., Zanin, F.A.A. & Martin, A.A. (2011). Effects of heating by steam autoclaving and Er:YAG laser etching on dentin components. Lasers Med Sci 26, 605613.Google Scholar
Stanislawczuk, R., Reis, A. & Loguercio, A.D. (2011). A 2-year in vitro evaluation of a chlorhexidine-containing acid on the durability of resin–dentin interfaces. J Dent 39, 4047.Google Scholar
Wang, Y. & Spencer, P. (2004). Physicochemical interactions at the interfaces between self-etch adhesive systems and dentine. J Dent 32, 567579.Google Scholar
Weerasinghe, D.D., Nikaido, T., Ichinose, S., Waidyasekara, K.G. & Tagami, J. (2007). Scanning electron microscopy and energy-dispersive X-ray analysis of self-etching adhesive systems to ground and unground enamel. J Mater Sci Mater Med 18, 11111116.Google Scholar
Yassen, G.H., Platt, J.A. & Hara, A.T. (2011). Bovine teeth as substitute for human teeth in dental research: A review of literature. J Oral Sci 53, 273282.Google Scholar
Yoshida, Y., Nagakane, K., Fukuda, R., Nakayama, Y., Okazaki, M., Shintani, H., Inoue, S., Tagawa, Y., Suzuki, K., De Munck, J. & Van Meerbeek, B. (2004). Comparative study on adhesive performance of functional monomers. J Dent Res 83, 454458.Google Scholar