Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T06:03:18.228Z Has data issue: false hasContentIssue false

Monolithic Chip System with a Microfluidic Channel for In Situ Electron Microscopy of Liquids

Published online by Cambridge University Press:  09 April 2014

Eric Jensen*
Affiliation:
Technical University of Denmark, DTU Nanotech, Ørsteds Plads, Building 345E, 2800 Kgs Lyngby, Denmark Technical University of Denmark, DTU Cen, Fysikvej, Building 307, 2800 Kgs. Lyngby, Denmark Ørsteds Plads, Building 345E, Room 253, 2800 Kgs. Lyngby, Denmark
Andrew Burrows
Affiliation:
Technical University of Denmark, DTU Cen, Fysikvej, Building 307, 2800 Kgs. Lyngby, Denmark
Kristian Mølhave
Affiliation:
Technical University of Denmark, DTU Nanotech, Ørsteds Plads, Building 345E, 2800 Kgs Lyngby, Denmark
*
*Corresponding author. [email protected]
Get access

Abstract

Electron microscopy of enclosed liquid samples requires the thinnest possible membranes as enclosing windows as well as nanoscale liquid sample thickness to achieve the best possible resolution. Today liquid sample systems for transmission electron microscopy (TEM) are typically made from two sandwiched microchips with thin membranes. We report on a new microfabricated chip system based on a monolithic design that enables membrane geometry on the scale of a few micrometers. The design is intended to reduce membrane deflection when the system is under pressure, a microfluidic channel for improved flow geometry, and a better space angle for auxiliary detectors such as energy-dispersive X-ray spectroscopy. We explain the system design and fabrication and show the first successful TEM images of liquid samples in the chips.

Type
In Situ Special Section
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.Google Scholar
De Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695704.Google Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.CrossRefGoogle ScholarPubMed
Gai, P.L., Sharma, R. & Ross, F.M. (2008). Environmental (S)TEM studies of gas-liquid-solid interactions under reaction conditions. MRS Bull 33, 107114.Google Scholar
Grogan, J.M., Rotkina, L. & Bau, H.H. (2011). In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys Rev E 83, 061405–1–5.Google Scholar
Holtz, M.E., Yu, Y., Abruña, H.D. & Muller, D.A. (2012). In-situ electron energy loss spectroscopy of liquids. Microsc Microanal 18, 10941095.Google Scholar
Huang, T.-W., Liu, S.-Y., Chuang, Y.-J., Hsieh, H.-Y., Tsai, C.-Y., Huang, Y.-T., Mirsaidov, U., Matsudaira, P., Tseng, F.-G., Chang, C.-S. & Chen, F.-R. (2012). Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip 12, 340347.CrossRefGoogle ScholarPubMed
Jungjohann, K.L., Bliznakov, S., Sutter, P.W., Stach, E.A. & Sutter, E.A. (2013). In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett 13, 29642970.Google Scholar
Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Müller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A, Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.Google Scholar
Klein, K.L., Anderson, I.M. & de Jonge, N. (2011). Transmission electron microscopy with a liquid flow cell. J Microsc 242, 117123.Google Scholar
Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F. & De Yoreo, J.J. (2012 a). Direction-specific interactions control crystal growth by oriented attachment. Science 336, 10141018.Google Scholar
Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F. & De Yoreo, J.J. (2012 b). Direction-specific interactions control crystal growth by oriented attachment. Science 336, 10141018.Google Scholar
Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 10111014.Google Scholar
Liu, K.-L., Wu, C.-C., Huang, Y.-J., Peng, H.-L., Chang, H.-Y., Chang, P., Hsu, L. & Yew, T.-R. (2008). Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 19151921.CrossRefGoogle ScholarPubMed
McFarland, A.D., Haynes, C.L., Mirkin, C.A., Van Duyne, R.P. & Godwin, H.A. (2004). Color my nanoworld. J Chem Educ 81, 544A544B.CrossRefGoogle Scholar
Mueller, C., Harb, M., Dwyer, J.R. & Miller, R.J.D. (2013). Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J Phys Chem Lett 4, 23392347.Google Scholar
Peckys, D.B. & de Jonge, N. (2011). Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett 11, 17331738.Google Scholar
Peckys, D.B., Veith, G.M., Joy, D.C. & de Jonge, N. (2009). Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS ONE 4, e8214.Google Scholar
Ring, E.A. & de Jonge, N. (2010). Microfluidic system for transmission electron microscopy. Microsc Microanal 16, 622629.Google Scholar
Schomburg, W.K. (2011). Membranes. In Introduction to Microsystem Design. Springer.Google Scholar
Tao, F.F. & Salmeron, M. (2011). In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171174.Google Scholar
White, E.R., Mecklenburg, M., Singer, S.B., Aloni, S. & Regan, B.C. (2011). Imaging nanobubbles in water with scanning transmission electron microscopy. Appl Phys Express 4, 055201.Google Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2, 532536.Google Scholar
Yang, J. & Paul, O. (2002). Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes. Sensors Actuators Phys 97–98, 520526.CrossRefGoogle Scholar
Yarin, A.L., Yazicioglu, A.G., Megaridis, C.M., Rossi, M.P. & Gogotsi, Y. (2005). Theoretical and experimental investigation of aqueous liquids contained in carbon nanotubes. J Appl Phys 97, 124309.Google Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 6164.Google Scholar
Zheng, H., Smith, R.K., Jun, Y., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.CrossRefGoogle ScholarPubMed