Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T22:21:46.201Z Has data issue: false hasContentIssue false

Mineralogical Characterization of Hispano-Moresque Glazes: A µ-Raman and Scanning Electron Microscopy with X-Ray Energy Dispersive Spectrometry (SEM-EDS) Study

Published online by Cambridge University Press:  05 June 2018

Susana Coentro*
Affiliation:
VICARTE – Research Unit “Glass and Ceramic for the Arts”, FCT, Caparica Campus, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal LAQV-REQUIMTE, DQ, FCT, Caparica Campus, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal Department of Conservation and Restoration, FCT, Caparica Campus, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
Rui C. da Silva
Affiliation:
IPFN-IST/UL, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal
Cátia Relvas
Affiliation:
Departamento de Química, Escola de Ciência e Tecnologia, Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal
Teresa Ferreira
Affiliation:
Departamento de Química, Escola de Ciência e Tecnologia, Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal
José Mirão
Affiliation:
Departamento de Geociências, Escola de Ciência e Tecnologia, Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal
Alfonso Pleguezuelo
Affiliation:
Universidad de Sevilla, C/S. Fernando, 4, C.P. 41004-Sevilla, España
Rui Trindade
Affiliation:
Museu Nacional de Arte Antiga (MNAA), Rua das Janelas Verdes, 1249-017 Lisboa, Portugal
*
*Author for correspondence: Susana Coentro, E-mail: [email protected]
Get access

Abstract

This work explores the combination of µ-Raman spectroscopy and scanning electron microscopy with X-ray energy dispersive spectrometry (SEM-EDS) for the study of the glazes in 15th–16th century Hispano-Moresque architectural tiles. These are high lead glazes that can be tin-opacified or transparent, and present five colors: tin-white, cobalt-blue, copper-green, iron-amber, and manganese-brown. They are generally homogenous and mineral inclusions are mostly concentrated in the glaze-ceramic interface. Through SEM-EDS, these inclusions were observed and chemically analyzed, whereas µ-Raman allowed their identification on a molecular level. K-feldspars, wollastonite and diopside were the most common compounds, as well as cassiterite agglomerates that render the glaze opaque. Malayaite was identified in green glazes, and andradite and magnesioferrite in amber glazes. Co–Ni–ferrites were identified in blue glazes, as well as Ni–Fe–olivines. Manganese-brown is the color where most compounds were identified: bustamite, jacobsite, hausmannite, braunite, and kentrolite. Through the µ-Raman analysis of different areas in large inclusions previously observed by SEM, it was possible to identify intermediate phases that illustrate the reaction process that occurs between the color-conferring compounds and the surrounding lead glaze. Furthermore, the obtained results allowed inference of the raw materials and firing temperatures used on the manufacture of these tiles.

Type
Micrographia
Copyright
© Microscopy Society of America 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

In memoriam of our co-author and dear friend V.S.F. Muralha.

Cite this article: Coentro S, da Silva RC, Relvas C, Ferreira T, Mirão J, Pleguezuelo A, Trindade R, Muralha VSF (2018) Mineralogical Characterization of Hispano-Moresque Glazes: A µ-Raman and Scanning Electron Microscopy with X-Ray Energy Dispersive Spectrometry (SEM-EDS) Study. Microsc Microanal24(3): 300–309. doi: 10.1017/S1431927618000338

References

Anthony, JW, Bideaux, RA, Bladh, KW and Nichols, MC (Eds) (2003) Handbook of Mineralogy. Chantilly, VA: Mineralogical Society of America.Google Scholar
Buzgar, N, Apopei, AI and Buzatu, A (2013) Characterization and source of Cucuteni black pigment (Romania): Vibrational spectrometry and XRD study. J Archaeol Sci 40(4), 21282135.Google Scholar
Caviró, BM (1991) Cerámica Hispanomusulmana andalusí y mudéjar. Madrid: Ediciones El Viso.Google Scholar
Chandramohan, P, Srinivasan, MP, Velmurugan, S and Narasimhan, SV (2011) Cation distribution and particle size effect on Raman spectrum of CoFe2O4 . J Solid State Chem 184, 8996.CrossRefGoogle Scholar
Coentro, S (2017) An Iberian heritage: Hispano-Moresque architectural tiles in Portuguese and Spanish Collections. PhD Thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa.Google Scholar
Coentro, S, Alves, LC, Relvas, C, Ferreira, T, Mirão, J, Molera, J, Pradell, T, Trindade, RAA, da Silva, RC and Muralha, VSF (2017) The glaze technology of Hispano-Moresque ceramic tiles: A comparison between Portuguese and Spanish collections. Archaeometry 59(4), 667684.Google Scholar
Coentro, S, Lima, AM, Silva, AS, Pais, AN, Mimoso, JM and Muralha, VSF (2012) Pigments and pigment mixtures in Portuguese 17th century Azulejos. J Eur Ceram Soc 32(1), 3748.CrossRefGoogle Scholar
Coentro, S, Trindade, RAA, Mirão, J, Candeias, A, Alves, LC, da Silva, RC and Muralha, VSF (2014) Hispano-Moresque ceramic tiles from the Monastery of Santa Clara-a-Velha (Coimbra, Portugal). J Archaeol Sci 41, 2128.Google Scholar
Coutinho, ML, Veiga, JP, Alves, LC, Mirão, J, Dias, L, Lima, AM, Muralha, VS and Macedo, MF (2016) Characterization of the glaze and in-glaze pigments of the nineteenth-century relief tiles from the Pena National Palace, Sintra, Portugal. Appl Phys A 122, 696.Google Scholar
Freeman, JJ, Wang, A, Kuebler, KE, Jolliff, BL and Haskin, LA (2008) Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can Mineral 46(6), 14771500.Google Scholar
Gratuze, B, Soulier, I, Blet, M and Vallauri, L (1996) De l’origine du cobalt: du verre à la céramique. Revue d’Archéométrie 20, 7794.CrossRefGoogle Scholar
Kamble, RB, Varade, V, Ramesh, KP and Prasad, V (2015) Domain size correlated magnetic properties and electrical impedance of size dependent nickel ferrite nanoparticles. AIP Adv 5(1), 17119.Google Scholar
Kim, J, Choi, KJ, Bahn, CB and Kim, JH (2014) In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water. J Nucl Mater 449, 181187.CrossRefGoogle Scholar
Lin, CC (2001) Vibrational spectroscopic study of the system α-Co2SiO4 - α-Ni2SiO4 . J Solid State Chem 157(1), 102109.Google Scholar
Machado, A and Vilarigues, M (2016) Cobalt blue – Reproduction and characterisation of blue enamel recipes from The Handmaid to the Arts by Robert Dossie. Glass Technol Eur J Glass Sci Technol A 57(4), 131140.Google Scholar
Majumdar, MG (2012) Analysis of stress-coupled magneto-electric effect in BaTiO3-CoFe2O4 composites using Raman spectroscopy. Int J Sci Eng Res 3(11), 17.Google Scholar
Molera, J, Pradell, T, Martinez-Manent, S and Vendrell-Saz, M (1993) The growth of sanidine crystals in the lead of glazes of Hispano-Moresque pottery. Appl Clay Sci 7(6), 483491.Google Scholar
Molera, J, Pradell, T, Salvadó, N and Vendrell-Saz, M (2001) Interactions between clay bodies and lead glazes. J Am Ceram Soc 84(5), 11201128.Google Scholar
Molera, J, Pradell, T, Salvadó, N and Vendrell-Saz, M (2009) Lead frits in Islamic and Hispano-Moresque glazed productions. In From Mine to Microscope: Advances in the study of Ancient Technology, Shortland, AJ, Freestone, I and Rehren, T (Eds.) pp. 110. Oxford: Oxbow Books.Google Scholar
Molera, J, Coll, J, Labrador, A and Pradell, T (2013) Manganese brown decorations in 10th to 18th century Spanish tin glazed ceramics. Appl Clay Sci 82, 8690.Google Scholar
Molera, J, Vendrell-Saz, M, García-Vallés, M and Pradell, T (1997) Technology and color development of Hispano-Moresque lead-glazed pottery. Archaeometry 39(1), 2339.Google Scholar
Mouri, T and Enami, M (2008) Raman spectroscopic study of olivine-group minerals. J Mineral Petrol Sci 103, 100104.Google Scholar
Mulholland, IR (1984) Malayaite and tin-bearing garnet from a skarn at Gumble, NSW, Australia. Mineralogical Mag 48(48), 2730.Google Scholar
Navarro, JMF (2003) El Vidrio. Madrid: Consejo Superior de Investigaciones Científicas/Sociedad Española de Cerámica y Vidrio.Google Scholar
Piña, C, Arriola, H and Nava, N (2005) Study of malayaite and malayaite cobalt pigment. Hyperfine Interact 161(1–4), 9397.CrossRefGoogle Scholar
Pleguezuelo Hernández, A (2003) Lozas y Azulejos de la Colección Carranza (2 vol) Castilla-La Mancha: Junta de Comunidades.Google Scholar
Pradell, T, Molera, J, Salvadó, N and Labrador, A (2010) Synchrotron radiation micro-XRD in the study of glaze technology. Appl Phys A 99, 407417.Google Scholar
Ricciardi, P (2008) Raman spectroscopy for the non destructive characterization of ancient pottery, porcelains and mosaic glasses, Università degli Studi di Firenze.Google Scholar
RRUFF (2016) RRUFF™ project. Available at http://rruff.info (retrieved October 10, 2016).Google Scholar
Trindade, RAA (2007) Revestimentos Cerâmicos Portugueses. Meados do século XIV à primeira metade do século XVI. Lisboa: Edições Colibri/Faculdade de Ciências Sociais e Humanas da Universidade Nova de Lisboa.Google Scholar
Vieira Ferreira, LF, Conceição, DS, Ferreira, DP, Santos, LF, Casimiro, TM and Ferreira Machado, I (2014) Portuguese 16th century tiles from Santo António da Charneca’s kiln: A spectroscopic characterization of pigments, glazes and pastes. J Raman Spectrosc 45, 838847.Google Scholar
Zhang, Z and Saxena, SK (1991) Thermodynamic properties of andradite and application to skarn with coexisting andradite and hedenbergite. Contrib Mineral Petrol 107(2), 255263.CrossRefGoogle Scholar
Zucchiatti, A, Bouquillon, A, Katona, I and D’Alessandro, A (2006) The ‘Della Robbia blue’: A case study for the use of cobalt pigments in ceramics during the Italian Renaissance. Archaeometry 48(1), 131152.Google Scholar
Zuluaga, MC, Alonso-Olazabal, A, Olivares, M, Ortega, L, Murelaga, X, Bienes, JJ, Sarmiento, A and Etxebarria, N (2012) Classification of glazed potteries from Christian and Muslim territories (Late Medieval Ages, IX–XIII centuries) by micro-Raman spectroscopy. J Raman Spectrosc 43, 18111816.Google Scholar