Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T00:00:10.329Z Has data issue: false hasContentIssue false

Micro-Topography and Reactivity of Implant Surfaces: An In Vitro Study in Simulated Body Fluid (SBF)

Published online by Cambridge University Press:  10 February 2015

M.G. Gandolfi*
Affiliation:
Department of Biomedical and NeuroMotor Sciences, University of Bologna - Via San Vitale 59 - 40126, Bologna, Italy
P. Taddei
Affiliation:
Department of Biomedical and NeuroMotor Sciences, University of Bologna - Via San Vitale 59 - 40126, Bologna, Italy
F. Siboni
Affiliation:
Department of Biomedical and NeuroMotor Sciences, University of Bologna - Via San Vitale 59 - 40126, Bologna, Italy
V. Perrotti
Affiliation:
Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara - Via dei Vestini 1 - 66100, Chieti, Italy
G. Iezzi
Affiliation:
Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara - Via dei Vestini 1 - 66100, Chieti, Italy
A. Piattelli
Affiliation:
Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara - Via dei Vestini 1 - 66100, Chieti, Italy
C. Prati
Affiliation:
Department of Biomedical and NeuroMotor Sciences, University of Bologna - Via San Vitale 59 - 40126, Bologna, Italy
*
*Corresponding author. [email protected]
Get access

Abstract

The creation of micro-textured dental implant surfaces possessing a stimulating activity represents a challenge in implant dentistry; particularly, the formation of a thin, biologically active, calcium-phosphate layer on their surface could help to strengthen the bond to the surrounding bone. The aim of the present study was to characterize in terms of macrostructure, micro-topography and reactivity in simulated body fluid (SBF), the surface of titanium (Ti) implants blasted with TiO2 particles, acid etched with hydrofluoric acid, and activated with Ca and Mg-containing nanoparticles. Sandblasted and acid-etched implants were analyzed by ESEM-EDX (environmental scanning electron microscope with energy dispersive X-ray system) to study the micromorphology of the surface and to perform elemental X-ray microanalysis (microchemical analyses) and element mapping. ESEM-EDX analyses were performed at time 0 and after a 28-day soaking period in SBF Hank’s balanced salt solution (HBSS) following ISO 23317 (implants for surgery—in vitro evaluation for apatite-forming ability of implant materials). Microchemical analyses (weight % and atomic %) and element mapping were carried out to evaluate the relative element content, element distribution, and calcium/phosphorus (Ca/P) atomic ratio. Raman spectroscopy was used to assess the possible presence of impurities due to manufacturing and to investigate the phases formed upon HBSS soaking. Micro-morphological analyses showed a micro-textured, highly rough surface with microgrooves. Microchemical analyses showed compositional differences among the apical, middle, and distal thirds. The micro-Raman analyses of the as-received implant showed the presence of amorphous Ti oxide and traces of anatase, calcite, and a carbonaceous material derived from the decomposition of an organic component of lipidic nature (presumably used as lubricant). A uniform layer of Ca-poor calcium phosphates (CaPs) (Ca/P ratio <1.47) was observed after soaking in HBSS; the detection of the 961 cm−1 Raman band confirms this finding. These implants showed a micro-textured surface supporting the formation of CaPs when immersed in SBF. These properties may likely favor bone anchorage and healing by stimulation of mineralizing cells.

Type
Biological and Biomaterials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggour, M., Dittrich, T., Belaidi, A., Sieber, I. & Rappich, J. (2005). Anodic preparation of porous TiO2 in fluoride solution. Phys Stat Sol (c) 2, 33443348.Google Scholar
Alghamdi, H.S., Cuijpers, V.M., Wolke, J.G., van den beucken, J.J. & Jansen, J.A. (2013). Calcium-phosphate-coated oral implants promote osseointegration in osteoporosis. J Dent Res 92, 982988.CrossRefGoogle ScholarPubMed
Aniket, , Young, A., Marriott, I. & El-ghannam, A. (2012). Promotion of pro-osteogenic responses by a bioactive ceramic coating. J Biomed Mater Res A 100, 33143325.Google Scholar
Aparicio, C., Manero, J.M., Conde, F., Pegueroles, M., Planell, J.A., Vallet-regí, M. & Gil, F.J. (2007). Acceleration of apatite nucleation on microrough bioactive Ti for bone-replacing implants. J Biomed Mater Res A 82, 521529.CrossRefGoogle Scholar
Ballo, A.M., Omar, O., Xia, W. & Palmquist, A. (2011). Dental implant surfaces – physicochemical properties, biological performance, and trends, chapter 2. pp. 19–57 In Implant Dentistry – A Rapid Evolving Practice, Ilser T., ISBN 978-953-307-658-4, Tech publisher, Rijeka, Croatia. pp. 1957.Google Scholar
Baranska, M., Schulz, H., Strehle, M. & Popp, J. (2011). Applications of vibrational spectroscopy to oilseeds analysis. In Applications of Vibrational Spectroscopy in Food Science, vol. 1, Li-Chan, E., Chalmers, J. & Griffiths, P. (Eds.), p. 414. John Wiley & Sons, Inc., Hoboken, NJGoogle Scholar
Biggs, M.J., Richards, R.G. & Dalby, M.J. (2010). Nanotopographical modification: A regulator of cellular function through focal adhesions. Nanomedicine 6, 619633.CrossRefGoogle ScholarPubMed
Biggs, M.J., Richards, R.G., Gadegaard, N., Mcmurray, R.J., Affrossman, S., Wilkinson, C.D., Oreffo, R.O. & Dalby, M.J. (2009). Interactions with nanoscale topography: Adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J Biomed Mater Res A 91, 195208.Google Scholar
Bigi, A., Boanini, E., Bracci, B., Facchini, A., Segatti, S.P.F. & Sturba, L. (2005). Nanocrystalline hydroxyapatite coatings on Ti: A new fast biomimetic method. Biomaterials 26, 40854089.Google Scholar
BS ISO 23317 (2012). Implants for surgery – In vitro evaluation for apatite-forming ability of implant materials. International Standard ISO/FDIS 23317:2012.Google Scholar
Busalev, Y.A., Bochkareva, V.A. & Nikolaev, N.S. (1962). The reaction of Ti dioxide with hydrofluoric acid. Russian Chem Bull 11, 361364.Google Scholar
Cao, W. & Hench, L.L. (1996). Bioactive materials. Ceramics Int 22, 493507.Google Scholar
Cooper, L.F. (2000). A role for surface topography in creating and maintaining bone at Ti endosseous implants. J Prosth Dent 84, 522534.Google Scholar
De veij, M., Vandenabeele, P., De beer, T., Remonc, J.P. & Moens, L. (2009). Reference database of Raman spectra of pharmaceutical excipients. J Raman Spectrosc 40, 297307.Google Scholar
Degasne, I., Baslé, M.F., Demais, V., Huré, G., Lesourd, M., Grolleau, B., Mercier, L. & Chappard, D. (1999). Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on Ti surfaces. Calcif Tissue Int 64, 499507.Google Scholar
Eanes, E.D., Gillessen, I.H. & Posner, A.S. (1965). Intermediate states in the precipitation of hydroxyapatite. Nature 208, 365367.CrossRefGoogle ScholarPubMed
Gandolfi, M.G., Taddei, P., Siboni, F., Modena, E., Ciapetti, G. & Prati, C. (2011 a). Development of the foremost light-curable calcium-silicate mta cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behaviour. Dent Mater 27, e134e157.CrossRefGoogle Scholar
Gandolfi, M.G., Taddei, P., Tinti, A., Dorigo, De., Stefano, E. & Prati, C. (2011 b). Alpha-TCP improves the apatite-formation ability of calcium-silicate hydraulic cement soaked in phosphate solutions. Mater Sci Eng C 31, 14121422.Google Scholar
Gandolfi, M.G., Taddei, P., Modena, E., Siboni, F. & Prati, C. (2013). Biointeractivity-related versus chemi/physisorption-related apatite precursor-forming ability of current root end filling materials. J Biomed Mater Res B 101, 11071123.CrossRefGoogle ScholarPubMed
Gandolfi, M.G., Taddei, P., Tinti, A., Dorigo, De., Stefano, E., Rossi, P.L. & Prati, C. (2010). Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions. Clin Oral Invest 14, 659668.Google Scholar
Gehrke, S.A. & do nascimento, P.C. (2013). Analysis of bone tissue healing around ti implant surface treated with tio sandblasted after three and six weeks used different histological methods – a study in rabbits. Sci J Med Clin Trials 150, 3440.Google Scholar
Gil, F.J., Manzanares, N., Badet, A., Aparicio, C. & Ginebra, M.P. (2014). Biomimetic treatment on dental implants for short-term bone regeneration. Clin Oral Invest 18, 5966.Google Scholar
Guo, J., Padilla, R.J., Ambrose, W., De kok, I.J. & Cooper, L.F. (2007). The effect of hydrofluoric acid treatment of TiO2 grit blasted Ti implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials 28, 54185425.Google Scholar
Hanawa, T., Kon, M., Ukai, H., Murakami, K., Miyamoto, Y. & Asaoka, K. (1997). Surface modification of Ti in calcium-ion-containing solutions. J Biomed Mater Res A 34, 273278.Google Scholar
Hench, L.L. & Wilson, J. (1984). Surface-active biomaterials. Science 226, 630636.CrossRefGoogle ScholarPubMed
Hori, N., Iwasa, F., Ueno, T., Takeuchi, K., Tsukimura, N., Yamada, M., Hattori, M., Yamamoto, A. & Ogawa, T. (2010). Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Dent Mater 26, 275287.CrossRefGoogle ScholarPubMed
Hubbs, F., Minhas, N.S., Jones, W., Greskevitch, M., Battelli, L.A., Porter, D.W., Goldsmith, W.T., Frazer, D., Landsittel, D.P., Ma, J.Y.C., Barger, M., Hill, K., Schwegler-berry, D., Robinson, V.A. & Castranova, V. (2001). Comparative pulmonary toxicity of 6 abrasive blasting agents. Toxicol Sci 61, 135143.Google Scholar
Iezzi, G., Vantaggiato, G., Shibli, J.A., Fiera, E., Falco, A., Piattelli, A. & Perrotti, V. (2012). Machined and sandblasted human dental implants retrieved after 5 years: A histologic and histomorphometric analysis of three cases. Quintess Int 43, 287292.Google Scholar
Kang, B.S., Sul, Y.T., Oh, S.J., Lee, H.J. & Albrektsson, T. (2009). XPS, AES and SEM analysis of recent dental implants. Acta Biomaterialia 5, 22222229.Google Scholar
Khang, D., Lu, J., Yao, C., Haberstroh, K.M. & Webster, T.J. (2008). The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on Ti. Biomaterials 29, 970983.Google Scholar
Kilpadi, D.V., Raikar, G.N., Liu, J., Lemons, J.E., Vohra, Y. & Gregory, J.C. (1998). Effect of surface treatment on unalloyed Ti implants: Spectroscopic analyses. J Biomed Mater Res A 40, 646659.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Kubo, K., Tsukimura, N., Iwasa, F., Ueno, T., Saruwatari, L., Aita, H., Chiou, W.A. & Ogawa, T. (2009). Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 30, 53195329.Google Scholar
Lamolle, S.F., Monjo, M., Lyngstadaas, S.P., Ellingsen, J.E. & Haugen, H.J. (2009 a). Ti implant surface modification by cathodic reduction in hydrofluoric acid: Surface characterization and in vivo performance. J Biomed Mater Res A 88, 581588.Google Scholar
Lamolle, S.F., Monjo, M., Rubert, M., Haugen, H.J., Lyngstadaas, S.P. & Ellingsen, J.E. (2009 b). The effect of hydrofluoric acid treatment of Ti surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials 30, 736742.CrossRefGoogle ScholarPubMed
Le guèhennec, L., Soueidan, A., Layrolle, P. & Amouriq, Y. (2007). Surface treatments of Ti dental implants for rapid osseointegration. Dent Mater 23, 844854.Google Scholar
Liu, X., Chu, P.K. & Ding, C. (2004). Surface modification of Ti, Ti alloys, and related materials for biomedical applications. Mater Sci Eng R 47, 49121.CrossRefGoogle Scholar
Lu, X. & Leng, Y. (2005). Theoretical analysis of Ca/P precipitation in simulated body fluid. Biomaterials 26, 10971108.Google Scholar
Martinez-ramirez, S., Sanchez-cortes, S., Garcia ramos, J.V., Domingo, C., Fortes, C. & Blanco-varela, M.T. (2003). Micro-Raman spectroscopy applied to depth profiles of carbonates formed in lime mortar. Cem Concr Res 33, 20632068.Google Scholar
Masaki, C., Schneider, G.B., Zaharias, R., Seabold, D. & Stanford, C. (2005). Effects of implant surface microtopography on osteoblast gene expression. Clin Oral Impl Res 16, 650656.Google Scholar
Massaro, C., Rotolo, P., De riccardis, F., Milella, E., Napoli, A., Wieland, M., Textor, M., Spencer, N.D. & Brunette, D.M. (2002). Comparative investigation of the surface properties of commercial Ti dental implants. Part I: Chemical composition. J Mater Sci: Mater Med 13, 535548.Google Scholar
Muzzarelli, R.A.A., Biagini, G., Mattioli belmonte, M., Talassi, O., Gandolfi, M.G., Solmi, R., Carraro, S., Giardino, R., Fini, M. & Nicoli aldini, N. (1997). Osteoinduction by chitosan-complexed BMP: Morpho-structural responses in an osteoporotic model. J Bioact Compat Polym 12, 321329.Google Scholar
Narayanan, R., Seshadri, S.K., Kwon, T.Y. & Kim, K.H. (2008). Ca/P-based coatings on Ti and its alloys. J Biomed Mater Res B 85, 279299.Google Scholar
Nelson, D.G.A. & Featherstone, J.D.B. (1982). Preparation, analysis and characterization of carbonated apatites. Calcif Tissue Int 34, S69S75.Google Scholar
Ohsaka, T., Izumi, F. & Fujiki, Y. (1978). Raman spectrum of anatase, TiO2 . J Raman Spectrosc 7, 321324.Google Scholar
Piattelli, A., Artese, L., Penitente, E., Iaculli, F., Degidi, M., Mangano, C., Shibli, A.J., Coelho, P.G., Perrotti, V. & Iezzi, G. (2014). Osteocyte density in the peri-implant bone of implants retrieved after different time periods (4 weeks to 27 years). J Biomed Mater Res B 102, 239243.Google Scholar
Racine, B., Ferrari, A.C., Morrison, N.A., Hutchings, I., Milne, W.I. & Robertson, J. (2001). Properties of amorphous carbon–silicon alloys deposited by a high plasma density source. J Appl Phys 90, 50025012.Google Scholar
Raynaud, S., Champion, E., Bernache-assollant, D. & Thomas, P. (2002). Ca/P apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23, 10651072.Google Scholar
Straumanis, M.E. & Chen, P.C. (1951). The mechanism and rate of dissolution of Ti in hydrofluoric acid. J Electrochem Soc 98, 234240.Google Scholar
Svetina, M., Colombi, L., Sbaizero, O. & Meriani, S.A.D. (2001). Deposition of calcium ions on rutile (110): A first-principles investigation. Acta Materialia 49, 21692177.Google Scholar
Taddei, P., Tinti, A., Bottura, G. & Bertoluzza, A. (2000). Vibrational spectroscopic characterization of new Ca/P bioactive coatings. Biopolymers 57, 140148.Google Scholar
Takadama, H., Kim, H.M., Kokubo, T. & Nakamura, T. (2001 a). An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive Ti metal. J Biomed Mater Res A 55, 185193.Google Scholar
Takadama, H., Kim, H.M., Kokubo, T. & Nakamura, T. (2001 b). TEM-EDX study of mechanism of bonelike apatite formation on bioactive Ti metal in simulated body fluid. J Biomed Mater Res A 57, 441448.Google Scholar
Tanahashi, M. & Matsuda, T. (1997). Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res A 34, 305315.Google Scholar
Textor, M., Sittig, C., Frauchiger, V., Tosatti, S. & Brunette, D.M. (2011). Properties and biological significance of natural oxide films on Ti and its alloys. In Ti in Medicine, Brunette, D. M., Tengvall, P., Textor, M. & Thomsen, P. (Eds.), pp. 171230. Berlin, Germany: Springer. Google Scholar
Tsukimura, N., Yamada, M., Iwasa, F., Minamikawa, H., Att, W., Ueno, T., Saruwatari, L., Aita, H., Chiou, W.A. & Ogawa, T. (2011). Synergistic effects of UV photofunctionalization and micro-nano hybrid topography on the biological properties of Ti. Biomaterials 32, 43584368.Google Scholar
Tuinstra, F. & Koenig, J.L. (1970). Raman spectrum of graphite. J Chem Phys 53, 11261130.Google Scholar
Vandenabeele, P., Wehling, B., Moens, L., Edwards, H., De reu, M. & Van hooydonk, G. (2000). Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal Chim Acta 407, 261274.CrossRefGoogle Scholar
Variola, F., Yi, J.H., Richert, L., Wuest, J.D., Rosei, F. & Nanci, A. (2008). Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials 29, 12851298.Google Scholar
Wang, L. & Nancollas, G.H. (2008). Calcium orthophosphates: Crystallization and dissolution. Chem Reviews 108, 46284669.Google Scholar
Wen, H.B., de wijn, J.R., Liu, Q., De groot, K. & Cui, F.Z. (1997). A simple method to prepare Ca/P coatings on Ti6Al4V. J Mater Sci: Mat Med 8, 765770.Google ScholarPubMed
Wopenka, B. & Pasteris, J.D. (2005). A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25, 131143.CrossRefGoogle Scholar
Yamada, M., Ueno, T., Tsukimura, N., Ikeda, T., Nakagawa, K., Hori, N., Suzuki, T. & Ogawa, T. (2012). Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on Ti implants. Int J Nanomed 7, 859873.Google Scholar
Yang, B.C., Weng, J., Li, X.D. & Zhang, X.D. (1999). The order of calcium and phosphate ion deposition on chemically treated Ti surfaces soaked in aqueous solution. J Biomed Mater Res A 47, 213219.Google Scholar