Article contents
Microstructure of TiC/Amorphous Hydrocarbon Nanocomposite Coatings
Published online by Cambridge University Press: 02 July 2020
Extract
Application of an appropriate ceramic surface coating to mechanical components such as bearings and gears can provide longer life and increased performance reliability. Metal-containing hydrocarbon (Me-C:H) coatings possess high hardness, together with low friction and low wear rate. They have also been suggested to adhere better to metallic substrates. This combination of attractive mechanical/tribological properties makes Me-C:H coatings potentially useful for surface modification of a wide range of mechanical components.
Using the technique of inductively coupled plasma (ICP) assisted vapor deposition[1], we have synthesized Ti-containing hydrocarbon (Ti-C:H) coatings with a wide range of Ti compositions[2]. Coating mechanical properties such as modulus and hardness have been measured by the technique of nanoindentation and correlated to Ti and hydrogen compositions[2,3].
We have performed detailed microstructural examination of Ti-C:H coatings by transmission electron microscopy (TEM), Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy, and X-ray Absorption Near Edge Structure (XANES) spectroscopy.
- Type
- Films and Coatings
- Information
- Microscopy and Microanalysis , Volume 6 , Issue S2: Proceedings: Microscopy & Microanalysis 2000, Microscopy Society of America 58th Annual Meeting, Microbeam Analysis Society 34th Annual Meeting, Microscopical Society of Canada/Societe de Microscopie de Canada 27th Annual Meeting, Philadelphia, Pennsylvania August 13-17, 2000 , August 2000 , pp. 440 - 441
- Copyright
- Copyright © Microscopy Society of America
References
References:
- 1
- Cited by