No CrossRef data available.
Published online by Cambridge University Press: 02 July 2020
SiC fibers fabricated by chemical vapor deposition (CVD) methods are being used as reinforcement for metal and ceramic matrix materials because of their high modulus, high strength and good corrosion resistance. These fibers have a complex composite microstructure consisting of a pyrolytic-carbon coated graphite core and a SiC sheath which is often protected by a single or a double layer of carbon-rich coating. Commercially available SCS-6 SiC fibers with a diameter of ˜ 140 μm have been most widely in use for composite fabrication. However, with an ever increasing demand for thinner and stronger fibers, an experimental SiC fiber with a diameter of ˜ 50 μm and having a C-rich SiC sheath was developed by Textron Specialty Materials. The as-fabricated tensile strength of this fiber was found to be ˜ 6 GPa, which is ˜ 50 % higher than that of the SCS-6 fiber.While the room temperature tensile strengths of these fibers heat treated for 1 h in Ar to temperatures ≤ 1600° C were better than those of the SCS-6 fiber, strength of the 2000° C heated fibers decreased to < 1 GPa.