Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-19T00:31:30.908Z Has data issue: false hasContentIssue false

Microstructural and Chemical Characterization of Nanostructured TiAlSiN Coatings with Nanoscale Resolution

Published online by Cambridge University Press:  09 May 2012

Vanda Godinho*
Affiliation:
Instituto de Ciencia de Materiales de Sevilla CSIC-Uni. Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain Université Libre de Bruxelles, Chemicals and Materials Department, Faculty of Applied Sciences, Avenue F.D. Roosevelt, 50 (CP165/163), 1050 Bruxelles, Belgium
Teresa C. Rojas
Affiliation:
Instituto de Ciencia de Materiales de Sevilla CSIC-Uni. Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
Susana Trasobares
Affiliation:
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510-Cádiz, Spain
Francisco J. Ferrer
Affiliation:
Centro Nacional de Aceleradores, Parque Tecnológico Cartuja 93, 41092 Sevilla, Spain
Marie-Paule Delplancke-Ogletree
Affiliation:
Université Libre de Bruxelles, Chemicals and Materials Department, Faculty of Applied Sciences, Avenue F.D. Roosevelt, 50 (CP165/163), 1050 Bruxelles, Belgium
Asuncion Fernández
Affiliation:
Instituto de Ciencia de Materiales de Sevilla CSIC-Uni. Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Nanoscale resolution electron microscopy analysis combined with ion beam assisted techniques are presented here, to give answers to full characterization of morphology, growth mode, phase formation, and compositional distribution in nanocomposite TiAlSiN coatings deposited under different energetic conditions. Samples were prepared by magnetron sputtering, and the effects of substrate temperature and bias were investigated. The nanocomposite microstructure was demonstrated by the formation of a face-centered cubic (Ti,Al)N phase, obtained by substitution of Al in the cubic titanium nitride (c-TiN) phase, and an amorphous matrix at the column boundary regions mainly composed of Si, N (and O for the samples with higher oxygen contents). Oxygen impurities, predicted as the principal responsible for the degradation of properties, were identified, particularly in nonbiased samples and confirmed to occupy preferentially nitrogen positions at the column boundaries, being mainly associated to silicon forming oxynitride phases. It has been found that the columnar growth mode is not the most adequate to improve mechanical properties. Only the combination of moderate bias and additional substrate heating was able to reduce the oxygen content and eliminate the columnar microstructure leading to the nanocomposite structure with higher hardness (>30 GPa).

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, A. (2010). A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 518(15), 40874090.CrossRefGoogle Scholar
Barshilia, H.C., Ghosh, M., Shashidhara, , Ramakrishna, R. & Rajam, K.S. (2010). Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering. Appl Surf Sci 256(21), 64206426.CrossRefGoogle Scholar
Carvalho, S., Rebouta, L., Cavaleiro, A., Rocha, L.A., Gomes, J. & Alves, E. (2001). Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings. Thin Solid Films 398399, 391396.CrossRefGoogle Scholar
Carvalho, S., Rebouta, L., Ribeiro, E., Vaz, F., Tavares, C.J., Alves, E., Barradas, N.P. & Riviere, J.P. (2009). Structural evolution of Ti-Al-Si-N nanocomposite coatings. Vacuum 83(10), 12061212.CrossRefGoogle Scholar
Christiansen, S., Albrecht, M., Strunk, H.P. & Veprek, S. (1998). Microstructure of novel superhard nanocrystalline amorphous composites as analyzed by high resolution transmission electron microscopy. J Vac Sci Technol B 16(1), 1922.CrossRefGoogle Scholar
Godinho, V., de Haro, M.C.J., Garcia-Lopez, J., Goossens, V., Terryn, H., Delplancke-Ogletree, M.P. & Fernandez, A. (2010a). SiOxNy thin films with variable refraction index: Microstructural, chemical and mechanical properties. Appl Surf Sci 256(14), 45484553.CrossRefGoogle Scholar
Godinho, V., Philippon, D., Rojas, T.C., Novikova, N.N., Yakovlev, V.A., Vinogradov, E.A. & Fernandez, A. (2010b). Characterization of Ti1-xAlxN coatings with selective IR reflectivity. Solar Energy 84(8), 13971401.CrossRefGoogle Scholar
Hao, S., Delley, B. & Stampfl, C. (2006a). Role of oxygen in TiN(111)/SixNy/TiN(111) interfaces: Implications for superhard nanocrystalline nc-TiN/a-Si3N4 nanocomposites. Phys Rev B 74, 035424.CrossRefGoogle Scholar
Hao, S., Delley, B. & Stampfl, C. (2006b). Structure and properties of TiN(111)/SixNy/TiN(111) interfaces in superhard nanocomposites: First-principles investigations. Phys Rev B 74(3), 035402.CrossRefGoogle Scholar
Hao, S., Delley, B., Veprek, S. & Stampfl, C. (2006c). Superhard nitride-based nanocomposites: Role of interfaces and effect of impurities. Phys Rev Lett 97(8), 086102.CrossRefGoogle ScholarPubMed
Hauert, R. & Patscheider, J. (2000). From alloying to nanocomposites—Improved performance of hard coatings. Adv Eng Mater 2(5), 247259.3.0.CO;2-U>CrossRefGoogle Scholar
MacKenzie, M., Weatherly, G.C., McComb, D.W. & Craven, A.J. (2005). Electron energy loss spectroscopy of a TiAlN coating on stainless steel. Scr Mater 53(8), 983987.CrossRefGoogle Scholar
Mahieu, S., Ghekiere, P., Depla, D. & De Gryse, R. (2006). Biaxial alignment in sputter deposited thin films. Thin Solid Films 515(4), 12291249.CrossRefGoogle Scholar
Mayer, M. (1997). SIMNRA User's Guide. Garching, Germany: Max-Plank-Institut für Plasmaphysik.Google Scholar
Mayrhofer, P.H., Mitterer, C., Hultman, L. & Clemens, H. (2006). Microstructural design of hard coatings. Prog Mater Sci 51(8), 10321114.CrossRefGoogle Scholar
Nakonechna, O., Cselle, T., Moretein, M. & Karimi, A. (2004). On the behaviour of indentation fracture in TiAlSiN hard thin films. Thin Solid Films 447448, 447448.Google Scholar
PalDey, S. & Deevi, S.C. (2003). Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review. Mater Sci Eng A-Struct 342(1-2), 5879.CrossRefGoogle Scholar
Park, I.-W. & Kim, K.H. (2003). Role of amorphous Si3N4 in the microhardness of Ti-Al-Si-N nanocomposite films. J Korean Phys Soc 42(6), 783786.Google Scholar
Perez-Omil, J.A. (1994). Interpretación sistemática de imágenes de microscopía electrónica de alta resolución de materiales policristalinos. Estudio de catalizadores metálicos soportados. In Departamento de Ciencia de Materiales e Ingenieria Metalurgica y Quimica Inorganica. Cadiz, Spain: University of Cadiz.Google Scholar
Philippon, D., Godinho, V., Nagy, P.M., Delplancke-Ogletree, M.P. & Fernandez, A. (2011). Endurance of TiAlSiN coatings: Effect of Si and bias on wear and adhesion. Wear 270(7-8), 541549.CrossRefGoogle Scholar
Ribeiro, E., Malczyk, A., Carvalho, S., Rebouta, L., Fernandes, J.V., Alves, E. & Miranda, A.S. (2002). Effects of ion bombardment on properties of d.c. sputtered superhard (Ti,Si, Al)N nanocomposite coatings. Surf Coat Technol 151152, 515520.CrossRefGoogle Scholar
Soderberg, H., Oden, M., Larsson, T., Hultman, L. & Molina-Aldareguia, J.M. (2006). Epitaxial stabilization of cubic-SiNx in TiN/SiNx multilayers. Appl Phys Lett 88(19), 191902.CrossRefGoogle Scholar
Tanaka, Y., Ichimiya, N., Onishi, Y. & Yamada, Y. (2001). Structure and properties of Al-Ti-Si-N coatings prepared by the cathodic arc ion plating method for high speed cutting applications. Surf Coat Technol 146147, 215221.CrossRefGoogle Scholar
Thornton, J.A. (1977). High rate thick film growth. Ann Rev Mater Sci 7, 239260.CrossRefGoogle Scholar
Vaz, F., Rebouta, L., Almeida, B., Goudeau, P., Pacaud, J., Riviere, J.P. & Sousa, J.B.E. (1999). Structural analysis of Ti1−xSixNy nanocomposite films prepared by reactive magnetron sputtering. Surf Coat Technol 120, 166172.CrossRefGoogle Scholar
Vaz, F., Rebouta, L., Goudeau, P., Pacaud, J., Garem, H., Riviere, J.P., Cavaleiro, A. & Alves, E. (2000). Characterisation of Ti1−xSixNy nanocomposite films. Surf Coat Technol 133, 307313.CrossRefGoogle Scholar
Veprek, S. & Jilek, M. (2003). Superhard and functional nanocomposites formed by self-organization in comparison with hardening of coatings by energetic ion bombardment during their deposition. Rev Adv Mater Sci 5, 616.Google Scholar
Veprek, S., Karvankova, P. & Veprek-Heijman, M.G. (2005a). Possible role of oxygen impurities in degradation of nc-TiN/a-Si3N4 nanocomposites. J Vac Sci Technol B 23(6), 1721.CrossRefGoogle Scholar
Veprek, S. & Reiprich, S. (1995). A concept for the design of novel superhard coatings. Thin Solid Films 268, 6471.CrossRefGoogle Scholar
Veprek, S., Veprek-Heijman, M.G.J., Karvankova, P. & Prochazka, J. (2005b). Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476(1), 129.CrossRefGoogle Scholar
Veprek, S., Zhang, R.F., Veprek-Heijman, M.G.J., Sheng, S.H. & Argon, A.S. (2010). Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surf Coat Technol 204(12-13), 18981906.CrossRefGoogle Scholar
Zhang, R.F. & Veprek, S. (2006). On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system. Mater Sci Eng A 424(1-2), 128137.CrossRefGoogle Scholar