Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T00:11:29.872Z Has data issue: false hasContentIssue false

Microscopic Analysis Applied to the Quality Control of Hancornia speciosa Gomes

Published online by Cambridge University Press:  23 July 2021

Edca Priscila Cardoso Ferreira Campos
Affiliation:
Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, Recife, Pernambuco50740-521, Brazil
Deysielle Maria dos Santos
Affiliation:
Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, Recife, Pernambuco50740-521, Brazil
Rafaela Damasceno Sá
Affiliation:
Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, Recife, Pernambuco50740-521, Brazil
Karina Perrelli Randau*
Affiliation:
Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, Recife, Pernambuco50740-521, Brazil
*
*Author for correspondence: Karina Perrelli Randau, E-mail: [email protected]
Get access

Abstract

Hancornia speciosa Gomes is popularly known as mangabeira and occurs throughout Brazil. It belongs to the Apocynaceae family and is very important for its food and medicinal uses. The objective of this study was to perform the anatomical and histochemical characterization of the leaves of H. speciosa. Microscope slides were made containing cross sections of petiole and leaf blade, as well as paradermic sections of the leaf blade. The analyses were performed under light and polarized microscopy. For the histochemical analysis, different reagents were used, according to the targeted metabolite. Through microscopic analysis, it was possible to identify the anatomical structures that provide the detailed diagnosis of the studied species. Through histochemistry, the presence of phenolic compounds, tannins, alkaloids, triterpenes and steroids, lipophilic compounds, lignin, starch, and calcium oxalate crystals was evidenced in the leaf blade. Thus, the results presented contribute to the quality control of H. speciosa, as well as to bring unpublished data about the species and to increase knowledge about the Apocynaceae family.

Type
Micrographia
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalla, MM, Eltahir, AS & El-Kamali, HH (2016). Comparative morph-anatomical leaf characters of Nerium oleander and Catharanthus roseus family (Apocynaceae). Eur J Basic Appl Sci 3, 6873.Google Scholar
Allam, KM, Abd El-Kader, AM, Mostafa, MA & Fouad, MA (2016). Botanical studies of the leaf, stem and root of Carissa macrocarpa, (Apocynaceae), cultivated in Egypt. J Pharmacogn Phytochem 5, 106113.Google Scholar
Almeida, L, Nogueira, CA, Borges, PP, Prado, ADL & Gonçalves, PJ (2016). State of the art of scientific literature on Hancornia speciosa: Trends and gaps. Rev Bras Frut 38.CrossRefGoogle Scholar
Almeida, LM, Floriano, JF, Ribeiro, TP, Magno, LN, Mota, LSLS, Peixoto, N, Mrué, F, Melo-Reis, P, Lino Junior, RS, Graeff, CF & Gonçalves, PJ (2014). Hancornia speciosa latex for biomedical applications: Physical and chemical properties, biocompatibility assessment and angiogenic activity. J Mater Sci Mater Med 25, 21532162.CrossRefGoogle ScholarPubMed
Baratto, LC, Hohlemwerger, SV, Guedes, MLS, Duarte, MR & Santos, CA (2010). Himatanthus lancifolius (Müll. Arg.) Woodson, Apocynaceae: Estudo farmacobotânico de uma planta medicinal da Farmacopeia Brasileira 1ª edição. Rev Bras Farmacogn 20, 651658.CrossRefGoogle Scholar
Barbosa, AM, Santos, KS, Borges, GR, Muniz, AV, Mendonça, FM, Pinheiro, MS, Franceschi, E, Dariva, C & Padilha, FF (2019). Separation of antibacterial biocompounds from Hancornia speciosa leaves by a sequential process of pressurized liquid extraction. Sep Purif Technol 222, 390395.CrossRefGoogle Scholar
Bastos, KX, Dias, CN, Nascimento, YM, Silva, MS, Langassner, SMZ, Wessjohann, LA & Tavares, JF (2017). Identification of phenolic compounds from Hancornia speciosa (Apocynaceae) leaves by UHPLC orbitrap-HRMS. Molecules 22, 143.CrossRefGoogle ScholarPubMed
Bukatsch, F (1972). Bemerkungen zur doppelfärbung Astrablau-Safranin. Mikrokosmos 61, 255.Google Scholar
Carvalho, R, Pellissari, LCO, Pace, MR, Scremin-Dias, E, Arruda, RO & Farinaccio, MA (2017). Leaf morphoanatomy of Araujia and Morrenia (Asclepiadoideae, Apocynaceae): Phylogenetic implications and species key. Bot J Linn Soc 183, 280293.CrossRefGoogle Scholar
Christenhusz, MJM & Byng, JW (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261, 201217.CrossRefGoogle Scholar
Coutinho, TS & Louzada, RB (2018). Flora da Usina São José, Igarassu, Oernambuco: Apocynaceae. Rodriguésia 69, 699714.CrossRefGoogle Scholar
Duarte, MDR & Larrosa, CRR (2011). Morpho-anatomical characters of the leaf and stem of Mandevilla coccinea (Hook. & Arn.) Woodson, Apocynaceae. Braz J Pharm Sci 47, 137144.Google Scholar
Ferreira, HC, Serra, CP, Lemos, VS, Braga, FC & Cortes, SF (2007). Nitric oxide-dependent vasodilatation by ethanolic extract of Hancornia speciosa via phosphatidyl-inositol 3-kinase. J Ethnopharmacol 109, 161164.CrossRefGoogle ScholarPubMed
Gabe, M (1968). Techniques Histologiques. Paris: Masson & Cie.Google Scholar
Gonçalves, MP, Mercadante-Simões, MO & Ribeiro, LM (2018). Ontogeny of anastomosed laticifers in the stem apex of Hancornia speciosa (Apocynaceae): A topographic approach. Protoplasma 255, 17131724.CrossRefGoogle ScholarPubMed
Jensen, WA (1962). Botanical Histochemistry: Principles and Practice. San Francisco: W. H. Freeman & Co.Google Scholar
Johansen, DA (1940). Plant Microtechnique. New York: McGraw-Hill.Google Scholar
Kannabiran, B & Ramassamy, V (1988). Foliar epidermis and taxonomy in Apocynaceae. Proc Indian Acad Sci (Plant Sci) 98, 409417.CrossRefGoogle Scholar
Koch, I, Rapini, A, Simões, AO, Kinoshita, LS, Spina, AP & Castello, ACD (2015). Apocynaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB48.Google Scholar
Kraus, JE & Arduin, M (1997). Manual Básico de Métodos em Morfologia Vegetal. Rio de Janeiro: EDUR.Google Scholar
Krauter, D (1985). Erfahrungen mit etzolds FSA-färbung für pflanzenschnitte. Mikrokosmos 74, 231233.Google Scholar
Krentkowski, FL & Duarte, MDR (2012). Morpho-anatomical analysis of Aspidosperma olivaceum and A. polyneuron, Apocynaceae. Rev Bras Farmacogn 22, 937945.CrossRefGoogle Scholar
Larrosa, CRR & Duarte, MR (2005). Morfoanatomia de folhas de Himatanthus sucuuba (Spruce) woodson, Apocynaceae. Acta Farm Bonaerense 24, 165171.Google Scholar
Larrosa, CRR & Duarte, MR (2006). Anatomia foliar e caulinar de Forsteronia glabrescens, Apocynaceae. Acta Farm Bonaerense 25, 2834.Google Scholar
Lima Neto, GA, Kaffashi, S, Luiz, WT, Ferreira, WR, Silva, YSAD, Pazin, GV & Violante, IMP (2015). Quantificação de metabólitos secundários e avaliação da atividade antimicrobiana e antioxidante de algumas plantas selecionadas do cerrado de mato grosso. Rev Bras Plantas Med 17, 10691077.CrossRefGoogle Scholar
Lucansky, TW & Clough, KT (1986). Comparative anatomy and morphology of Asclepias perennis and Asclepias tuberosa subspecies Rolfsii. Bot Gaz 147, 290301.CrossRefGoogle Scholar
Mace, ME, Bell, AA & Stipanovic, RD (1974). Histochemistry and isolation of gossypol and related terpenoids in root of cotton seedlings. Phytophatology 64, 12971302.CrossRefGoogle Scholar
Mace, MZ & Howell, CR (1974). Histochemistry and identification of condensed tannin precursors in roots of cotton seedlings. Can J Bot 52, 24232426.CrossRefGoogle Scholar
Martins, S & Alves, M (2008). Aspectos anatômicos de espécies simpátridas de Mandevilla (Apocynaceae) ocorrentes em inselbergues de pernambuco-Brasil. Rodriguésia 59, 369380.CrossRefGoogle Scholar
Metcalfe, CR & Chalk, L (1950). Anatomy of the Dicotyledons: Leaves, Stem, and Wood in Relation to Taxonomy with Notes on Economic Uses. Oxford: Clarendon Press.Google Scholar
Moreira, LN, Feltrin, C, Gonçalves, JE, Castro, WV, Simões, CM, Pádua, RM, Cortes, SF & Braga, FC (2020). Determination of l-(+)-bornesitol, the hypotensive constituent of Hancornia speciosa, in rat plasma by LC-MS/MS and its application on a pharmacokinetic study. Biomed Pharmacother 132, 110900.CrossRefGoogle ScholarPubMed
Pacheco, J (1980). Contribuição ao estudo anatômico da espécie Catharanthus roseus (L) G. Don var. roseus (Apocynaceae). Rodriguésia 32, 3954.CrossRefGoogle Scholar
Penido, AB, Morais, SM, Ribeiro, AB, Alves, DR, Rodrigues, ALM, Santos, LH & Menezes, JESA (2017). Medicinal plants from northeastern Brazil against Alzheimer's disease. Evid Based Complement Alternat Med 2017, Article id: 1753673.CrossRefGoogle ScholarPubMed
Pereira, AC, Pereira, ABD, Moreira, CC, Botion, LM, Lemos, VS, Braga, FC & Cortes, SF (2015). Hancornia speciosa Gomes (Apocynaceae) as a potential anti-diabetic drug. J Ethnopharmacol 161, 3035.CrossRefGoogle Scholar
Quinet, CGP & Andreata, RHP (2005). Estudo taxonômico e morfológico das espécies de Apocynaceae Adans. na reserva Rio das Pedras, Município de Mangaratiba, Rio de Janeiro, Brasil. Pesquisas, Botânica 56, 1374.Google Scholar
Ramesh, L, Sudhakar, M, Chetty, KM & Mahendranath, M (2014). Comparative pharmacognosy of Asclepias curassavica used in ayurvedic drug “Kakanasa” with its adulterant Leptadenia reticulata. Int J Pharm Sci Rev Res 26, 4349.Google Scholar
Reis, ARS, Potiguara, RCV & Reis, LP (2013). Anatomia foliar de Aspidosperma Mart. & Zucc.(Apocynaceae). Enciclopedia Biosfera 9, 32063227.Google Scholar
Ribeiro, RV, Bieski, IGC, Balogun, SO & Martins, DTO (2017). Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. J Ethnopharmacol 205, 69102.CrossRefGoogle ScholarPubMed
Rio, MCS, Kinoshita, LS & Castro, MM (2005). Anatomia foliar como subsídio para a taxonomia de espécies de Forsteronia G. Mey. (Apocynaceae) dos cerrados paulistas. Braz J Bot 28, 713726.CrossRefGoogle Scholar
Rodrigues, VEG & Carvalho, DD (2001). Levantamento etnobotânico de plantas medicinais no domínio do cerrado na região do Alto Rio Grande-Minas Gerais. Ciênc Agrotec 25, 102123.Google Scholar
, RD, Silva, AS, Santos, DM & Randau, KP (2019). Caracterização anatômica e histoquímica da lamina foliar de Calotropis procera (Aiton). W.T.Aiton. In Biomedicina E Farmácia: Aproximações, vol. 2, Lopes, LBM & Melo, TS (Eds.), pp. 207213. Ponta Grossa, PR: Atena Editora.CrossRefGoogle Scholar
Santos, MCA, Freitas, SDP, Aroucha, EMM & Santos, ALA (2009). Anatomia e histoquímica de folhas e raízes de vinca (Catharanthus roseus (L.) G. Don). Rev Biol Ciênc Terra 9, 2430.Google Scholar
Santos, UP, Campos, JF, Torquato, HFV, Paredes-Gamero, EJ, Carollo, CA, Estevinho, LM, Souza, KP & Santos, EL (2016). Antioxidant, antimicrobial and cytotoxic properties as well as the phenolic content of the extract from Hancornia speciosa Gomes. PLoS ONE 11, e0167531.CrossRefGoogle ScholarPubMed
Santos, UP, Tolentino, GS, Morais, JS, Souza, KP, Estevinho, LM & Santos, EL (2018). Physicochemical characterization, microbiological quality and safety, and pharmacological potential of Hancornia speciosa Gomes. Oxid Med Cell Longev 2018, 117.Google ScholarPubMed
Sass, JE (1951). Botanical Microtechnique. Ames: Iowa State College Press.Google Scholar
Sennblad, B & Bremer, B (2002). Classification of Apocynaceae s.l. According to a new approach combining Linnaean and phylogenetic taxonomy. Syst Biol 51, 389409.CrossRefGoogle ScholarPubMed
Sethi, P (2014). Morphological, microscopical, physico-chemical and antimicrobial investigations on leaves of Calotropis gigantea Linn. Int J Res Ayurveda Pharm 5, 193197.CrossRefGoogle Scholar
Silva, BRSD, Gil, ADSB & Simões, AO (2018). Anatomia dos órgãos vegetativos como subsídios à taxonomia de Geissospermum (Apocynaceae-Rauvolfioideae). Rodriguésia 69, 20932107.CrossRefGoogle Scholar
Silva, GC, Braga, FC, Lemos, VS & Cortes, SF (2016). Potent antihypertensive effect of Hancornia speciosa leaves extract. Phytomedicine 23, 214219.CrossRefGoogle ScholarPubMed
Silva, GC, Braga, FC, Lima, MP, Pesquero, JL, Lemos, VS & Cortes, SF (2011). Hancornia speciosa Gomes induces hypotensive effect through inhibition of ACE and increase on NO. J Ethnopharmacol 137, 709713.CrossRefGoogle Scholar
Silva, MABD, Melo, LVL, Ribeiro, RV, Souza, JPMD, Lima, JCS, Martins, DTDO & Silva, RMD (2010). Levantamento etnobotânico de plantas utilizadas como anti-hiperlipidêmicas e anorexígenas pela população de Nova Xavantina-MT, Brasil. Rev Bras Farmacogn 20, 549562.CrossRefGoogle Scholar
Silva, NF, Hanazaki, N, Albuquerque, UP, Campos, A, Loureiro, J, Feitosa, IS & Araújo, EDL (2019). Local knowledge and conservation priorities of medicinal plants near a protected area in Brazil. Evid Based Complementary Altern Med 2019, 118.CrossRefGoogle Scholar
Silva Junior, JF, Mota, DM, Schmitz, H & Rodrigues, RFA (2017). Mangabeira: Uma espécie historicamente pernambucana. Arrudea 3, 222.Google Scholar
Souza, VC & Lorenzi, H (2012). Botânica Sistemática: Guia Ilustrado Para Identificação das Famílias de Fanerógamas Nativas E Exóticas no Brasil, Baseado em APG III. Nova Odessa, São Paulo: Instituto Plantarum.Google Scholar
Trindade, RCDS, Kikuchi, T, Silva, R, Vale, V, Oliveira, ABD, Dolabela, M & Coelho-Ferreira, M (2016). Estudo farmacobotânico das folhas de Aspidosperma excelsum benth.(Apocynaceae). Revista Fitos 10, 220372.CrossRefGoogle Scholar
Yoder, LR & Mahlberg, PG (1976). Reactions of alkaloid and histochemical indicators in laticifers and specialized parenchyma cells of Catharanthus roseus (Apocynaceae). Am J Bot 63, 11671173.CrossRefGoogle Scholar