Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T19:56:33.090Z Has data issue: false hasContentIssue false

Metallographic Assessment of Al-12Si High-Pressure Die Casting Escalator Steps

Published online by Cambridge University Press:  07 July 2014

George Frederic Vander Voort
Affiliation:
Consultant, 2887 N. Southern Hills Drive, Wadsworth, IL 60083-9293, USA
Beatriz Suárez-Peña
Affiliation:
Department of Materials Science and Metallurgical Engineering, Polytechnic School of Engineering, University of Oviedo, Campus of Gijón, Gijón, Asturias 33203, Spain
Juan Asensio-Lozano*
Affiliation:
Department of Materials Science and Metallurgical Engineering, The School of Mines, The University of Oviedo, Oviedo 33004, Spain
*
*Corresponding author. [email protected]
Get access

Abstract

A microstructural characterization study was performed on high-pressure die cast specimens extracted from escalator steps manufactured from an Al-12 wt.% Si alloy designed for structural applications. Black and white, color light optical imaging and scanning electron microscopy techniques were used to conduct the microstructural analysis. Most regions in the samples studied contained globular-rosette primary α-Al grains surrounded by an Al-Si eutectic aggregate, while primary dendritic α-Al grains were present in the surface layer. This dendritic microstructure was observed in the regions where the melt did not impinge directly on the die surface during cavity filling. Consequently, microstructures in the surface layer were nonuniform. Utilizing physical metallurgy principles, these results were analyzed in terms of the applied pressure and filling velocity during high-pressure die casting. The effects of these parameters on solidification at different locations of the casting are discussed.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asensio-Lozano, J., Del Campo, J.J. & Suarez-Peña, B. (2005). Correlation between microstructure and mechanical properties of escalator steps made by high pressure die casting. Microsc Microanal 11(Suppl 2), 17161717.Google Scholar
Asensio-Lozano, J., Suarez-Peña, B. & Vander Voort, G.F. (2006). Microstructural optimization of chill cast Al-Si eutectic alloys. Microsc Microanal 12(Suppl 2), 16081609.CrossRefGoogle Scholar
Asensio-Lozano, J., Suarez-Peña, B. & Vander Voort, G.F. (2007). Interpretation of the mechanical quality index through the microstructure in hypoeutectic and eutectic treated Al-Si alloys. Microsc Microanal 13(Suppl 2), 110111.CrossRefGoogle Scholar
ASM Handbook (2008). Solidification of eutectic alloys. Aluminum silicon. In Casting vol. 15, Makhlouf, M.M. & Srinath, Viswanathan (Eds.), pp. 312316. Materials Park, OH: ASM International.CrossRefGoogle Scholar
ASM Specialty Handbook (2002 a). Phase diagrams. In ASM Aluminum and Aluminum Alloys, Davis, J.R., Davis & Associates (Eds.), p. 555. Materials Park, OH: ASM International.Google Scholar
ASM Specialty Handbook (2002 b). Properties of aluminum and aluminum alloys. In ASM Aluminum and Aluminum Alloys, Davis, J.R.Davis & Associates (Eds.), pp. 642. Materials Park, OH: ASM International.Google Scholar
ASM Specialty Handbook (2002 c). Properties of aluminum and aluminum alloys. In ASM Aluminum and Aluminum Alloys, Davis, J.R.Davis & Associates (Eds.), pp. 725726. Materials Park, OH: ASM International.Google Scholar
Cao, X. & Campbell, J. (2004). The solidification characteristics of Fe-rich intermetallics in Al-11.5Si-0.4Mg cast alloys. Metall Mater Trans A 35, 14251435.CrossRefGoogle Scholar
Chen, Z.W. (2003). Skin solidification during high pressure die casting of Al-11Si-2Cu-1Fe. Mat Sci Eng A 348, 145153.CrossRefGoogle Scholar
Chen, Z.W. & Jahedi, M.Z. (1999). Die erosion and its effect on soldering formation in high pressure die casting of aluminum alloys. Mater Design 20, 303309.CrossRefGoogle Scholar
Cho, Y.H., Lee, H.C., Oh, K.H. & Dahle, A.K. (2008). Effect of strontium and phosphorus on eutectic Al-Si nucleation and formation of β-AlFeSi in hypoeutectic Al-Si foundry alloys. Metall Mater Trans A 39, 24352448.CrossRefGoogle Scholar
Dargusch, M.S., Dour, G., Schauer, N., Dinnis, C.M. & Savage, G. (2006). The influence of pressure during solidification of high pressure die cast aluminium telecommunications components. J Mater Process Technol 180, 3743.CrossRefGoogle Scholar
Dinnis, C.M., Dahle, A.K. & Taylor, J.A. (2005). Three-dimensional analysis of eutectic grains in hypoeutectic Al–Si alloys. Mat Sci Eng A 392, 440448.CrossRefGoogle Scholar
Ghomashchi, M.R. & Vikhrov, A. (2000). Squeeze casting: An overview. J Mater Process Technol 101, 19.CrossRefGoogle Scholar
Hamasaiida, A., Doura, G., Loulouc, T. & Darguschba, M.S. (2010). A predictive model for the evolution of the thermal conductance at the casting—die interfaces in high pressure die casting. Int J Therm Sci 49, 365372.CrossRefGoogle Scholar
Ho, C.R. & Cantor, B. (1995). Heterogeneous nucleation of solidification of Si in Al-Si and Al-Si-P alloys. Acta Metal Mater 43, 32313246.CrossRefGoogle Scholar
Kattner, U.R. & Burton, B.P. (1993). Phase diagrams of binary iron alloys. In Alloy Phase Diagrams, Okamoto H. (Ed.), pp. 1228. Materials Park, OH: ASM International.Google Scholar
Kong, L.X., She, F.H., Gao, W.M. & Nahavandi, S. (2008). Integrated optimization system for high pressure die casting processes. J Mater Process Technol 201, 629634.CrossRefGoogle Scholar
Kral, M.V., Nakashima, P.N.H. & Michell, D.R.G. (2006). Electron microscope studies of Al-Fe-Si intermetallics in an Al-11 Pct Si alloy. Met Trans A 37, 19871997.CrossRefGoogle Scholar
Laukli, H.I., Arnberg, L. & Lohne, O. (2005). Effects of grain refiner additions on the grain structures in HPDC A356 castings. Int J Cast Metal Res 18, 6572.CrossRefGoogle Scholar
Liao, H.C., Zhang, M., Bi, J.J., Ding, K., Xi, X. & Wu, S.Q. (2010). Eutectic solidification in near-eutectic Al-Si casting alloys. J Mater Sci Technol 26, 10891097.CrossRefGoogle Scholar
Lu, L. & Dahle, A.K. (2005). Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si Alloys. Metall Mater Trans A 36, 819835.Google Scholar
Mcdonald, S.D., Nogita, K. & Dahle, A.K. (2004). Eutectic nucleation in Al–Si alloys. Acta Mater 52, 42734280.CrossRefGoogle Scholar
Molina, J.M., Piñero, E., Narciso, J., Garcia-Cordovilla, C. & Louis, E. (2005). Liquid metal infiltration into ceramic particles preforms with bimodal size distribution. Curr Opin Solid St M 9, 202210.CrossRefGoogle Scholar
Mondolfo, L.F. (1976). Aluminum Alloys Structure and Properties. London, UK: Butterworth & Co.Google Scholar
Sathyapal, H.K. & Narayan, P. (2008). Modification of eutectic silicon in Al-Si alloys. J Mater Sci 43, 30093027.Google Scholar
Shankar, S., Riddle, Y.W. & Makhlouf, M.M. (2004). Nucleation mechanism of the eutectic phases in aluminum-silicon hypoeutectic alloys. Acta Mater 52, 44474460.CrossRefGoogle Scholar
Suarez-Peña, B., Asensio-Lozano, J. & Vander Voort, G.F. (2007). Metallographic research of the pressure effect on the final microstructure of eutectic Al-Si alloys. Microsc Microanal 13(Suppl 2), 10301031.Google Scholar
Sundmana, B., Ohnumab, I., Dupinc, N., Kattnerd, U.R. & Fries, S.G. (2009). An assessment of the entire Al–Fe system including D03 ordering. Acta Mater 57, 28962908.CrossRefGoogle Scholar
Vander Voort, G.F. (1981). Etching techniques for image analysis. In Microstructural Science, Petzow G.R., Paris R., Albrecht E.D. & Mc Call J.L. (Eds.), vol. 9, pp. 137154. New York: Elsevier North-Holland.Google Scholar
Vander Voort, G.F. (1999). Metallography: Principles and Practice. Materials Park, OH: ASM International.Google Scholar
Vander Voort, G.F. (2004 a). Color metallography. In Metallography and Microstructures, ASM Handbook, Vander Voort G.F. (Ed.), vol. 9, pp. 493512. Materials Park, OH: ASM International.CrossRefGoogle Scholar
Vander Voort, G.F. (2004 b). Light microscopy. In Metallography and Microstructures ASM Handbook, Vander Voort G.F. (Ed.), vol. 9, pp. 332354). Materials Park, OH: ASM International.CrossRefGoogle Scholar
Vander Voort, G.F. & Asensio-Lozano, J. (2009). The Al-Si Phase Diagram. Microsc Microanal 15(Suppl 2), 6061.CrossRefGoogle Scholar
Vander Voort, G.F., Asensio-Lozano, J. & Suarez-Peña, B. (2013). Color metallography and electron microscopy techniques applied to the characterization of 413.0 aluminum alloys. Microsc Microanal 19, 10191026.CrossRefGoogle Scholar
Warmuzek, M. (2004). Metallographic techniques for aluminum and its alloys. In Metallography and Microstructures, ASM Handbook, Vander Voort G.F. (Ed.), vol. 9, pp. 711751. Materials Park, OH: ASM International.CrossRefGoogle Scholar
Weck, E. & Leistner, E. (1986). Metallographic Instructions for Color Etching by Immersion, Part III: Non-Ferrous Metals, Cemented Carbides and Ferrous Metals, Nickel-Base and Cobalt-Base Alloys. Dusseldorf, Germany: Deutscher Verlag für Schweißtechnik (DVS) GmbH.Google Scholar