Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T03:30:25.793Z Has data issue: false hasContentIssue false

Mesoscale Thermal Transport Measurements of Multi-phase and Porous Nuclear Fuels Using a Square-wave Pulse Thermoreflectance Technique

Published online by Cambridge University Press:  30 July 2020

Scott Middlemas
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho, United States
Zilong Hua
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho, United States
Vinay Chauhan
Affiliation:
The Ohio State University, Columbus, Ohio, United States
W. Tanner Yorgason
Affiliation:
Arizona State University, Tempe, Arizona, United States
Robert Schley
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho, United States
Cynthia Adkins
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho, United States
Tsvetoslav Pavlov
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho, United States
Marat Khafizov
Affiliation:
The Ohio State University, Columbus, Ohio, United States
David Hurley
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advanced Characterization of Nuclear Fuels and Materials
Copyright
Copyright © Microscopy Society of America 2020

References

Kim, Y.S., Hofman, G.L., Hayes, S.L., Yacout, A.M., Modeling of constituent redistribution in U-Pu-Zr metallic fuel, Journal of Nuclear Materials, 359 (2006) 1728.10.1016/j.jnucmat.2006.07.013CrossRefGoogle Scholar
Rondinella, V.V., Wiss, T., The high burn-up structure in nuclear fuel, Materials Today, 13 (2010) 2432.10.1016/S1369-7021(10)70221-2CrossRefGoogle Scholar
Amaya, M., Nakamura, J., Nagase, F., Fuketa, T., Thermal conductivity evaluation of high burnup mixed-oxide (MOX) fuel pellet, Journal of Nuclear Materials, 414 (2011) 303308.10.1016/j.jnucmat.2011.04.020CrossRefGoogle Scholar
Khafizov, M., Chauhan, V., Wang, Y., Riyad, F., Hang, N., Hurley, D.H., Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications, Journal of Materials Research, 32 (2016) 204216.10.1557/jmr.2016.421CrossRefGoogle Scholar
Pakarinen, J., Khafizov, M., He, L., Wetteland, C., Gan, J., Nelson, A.T., Hurley, D.H., El-Azab, A., Allen, T.R., Microstructure changes and thermal conductivity reduction in UO2 following 3.9MeV He2+ ion irradiation, Journal of Nuclear Materials, 454 (2014) 283289.10.1016/j.jnucmat.2014.07.053CrossRefGoogle Scholar
Cheaito, R., Gorham, C.S., Misra, A., Hattar, K., Hopkins, P.E., Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage, Journal of Materials Research, 30 (2015) 14031412.10.1557/jmr.2015.11CrossRefGoogle Scholar
Middlemas, S., Hua, Z., Chauhan, V., Yorgason, W.T., Schley, R., Khanolkar, A., Khafizov, M., Hurley, D., Determining local thermal transport in a composite uranium-nitride/silicide nuclear fuel using square-pulse transient thermoreflectance technique. Journal of Nuclear Materials, 528 (2020) 151842.10.1016/j.jnucmat.2019.151842CrossRefGoogle Scholar
Hurley, D.H., Schley, R.S., Khafizov, M., Wendt, B.L., Local measurement of thermal conductivity and diffusivity, Review of Scientific Instruments, 86 (2015) 123901.10.1063/1.4936213CrossRefGoogle ScholarPubMed