Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T10:04:30.349Z Has data issue: false hasContentIssue false

Measurement Error in Atomic-Scale Scanning Transmission Electron Microscopy—Energy-Dispersive X-Ray Spectroscopy (STEM-EDS) Mapping of a Model Oxide Interface

Published online by Cambridge University Press:  05 April 2017

Steven R. Spurgeon
Affiliation:
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Yingge Du
Affiliation:
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Scott A. Chambers*
Affiliation:
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
*
*Corresponding author. [email protected]
Get access

Abstract

With the development of affordable aberration correctors, analytical scanning transmission electron microscopy (STEM) studies of complex interfaces can now be conducted at high spatial resolution at laboratories worldwide. Energy-dispersive X-ray spectroscopy (EDS) in particular has grown in popularity, as it enables elemental mapping over a wide range of ionization energies. However, the interpretation of atomically resolved data is greatly complicated by beam–sample interactions that are often overlooked by novice users. Here we describe the practical factors—namely, sample thickness and the choice of ionization edge—that affect the quantification of a model perovskite oxide interface. Our measurements of the same sample, in regions of different thickness, indicate that interface profiles can vary by as much as 2–5 unit cells, depending on the spectral feature. This finding is supported by multislice simulations, which reveal that on-axis maps of even perfectly abrupt interfaces exhibit significant delocalization. Quantification of thicker samples is further complicated by channeling to heavier sites across the interface, as well as an increased signal background. We show that extreme care must be taken to prepare samples to minimize channeling effects and argue that it may not be possible to extract atomically resolved information from many chemical maps.

Type
Materials Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, L., D’Alfonso, A. & Findlay, S. (2015). Modelling the inelastic scattering of fast electrons. Ultramicroscopy 151, 1122.Google Scholar
Allen, L.J., D’Alfonso, A.J., Freitag, B. & Klenov, D.O. (2012). Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy. MRS Bull 37, 4752.Google Scholar
Chakhalian, J., Freeland, J.W., Millis, A.J., Panagopoulos, C. & Rondinelli, J.M. (2014). Emergent properties in plane view: Strong correlations at oxide interfaces. Rev Mod Phys 86, 11891202.Google Scholar
Chen, Z., D’Alfonso, A., Weyland, M., Taplin, D., Allen, L. & Findlay, S. (2015). Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy. Ultramicroscopy 157, 2126.Google Scholar
Chen, Z., Weyland, M., Sang, X., Xu, W., Dycus, J., LeBeau, J., D’Alfonso, A., Allen, L. & Findlay, S. (2016). Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy. Ultramicroscopy 168, 716.CrossRefGoogle ScholarPubMed
Colby, R., Qiao, L., Zhang, K.H.L., Shutthanandan, V., Ciston, J., Kabius, B. & Chambers, S.A. (2013). Cation intermixing and electronic deviations at the insulating LaCrO3/SrTiO3 (001) interface. Phys Rev B 88, 155325.CrossRefGoogle Scholar
D’Alfonso, A.J., Freitag, B., Klenov, D. & Allen, L.J. (2010). Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys Rev B 81, 100101.Google Scholar
Forbes, B.D., D’Alfonso, A.J., Williams, R.E.A., Srinivasan, R., Fraser, H.L., McComb, D.W., Freitag, B., Klenov, D.O. & Allen, L.J. (2012). Contribution of thermally scattered electrons to atomic resolution elemental maps. Phys Rev B 86, 024108.CrossRefGoogle Scholar
Forbes, B.D., Martin, A.V., Findlay, S.D., D’Alfonso, A.J. & Allen, L.J. (2010). Quantum mechanical model for phonon excitation in electron diffraction and imaging using a Born-Oppenheimer approximation. Phys Rev B 82, 104103.Google Scholar
Kothleitner, G., Neish, M., Lugg, N., Findlay, S., Grogger, W., Hofer, F. & Allen, L. (2014). Quantitative elemental mapping at atomic resolution using X-ray spectroscopy. Phys Rev Lett 112, 085501.Google Scholar
Kotula, P.G., Klenov, D.O. & von Harrach, H.S. (2012). Challenges to quantitative multivariate statistical analysis of atomic-resolution X-Ray spectra. Microsc Microanal 18, 691698.CrossRefGoogle Scholar
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.Google Scholar
Lu, P., Romero, E., Lee, S., MacManus-Driscoll, J.L. & Jia, Q. (2014). Chemical quantification of atomic-scale EDS maps under thin specimen conditions. Microsc Microanal 20, 17821790.Google Scholar
Lu, P., Xiong, J., Van Benthem, M. & Jia, Q. (2013). Atomic-scale chemical quantification of oxide interfaces using energy-dispersive X-ray spectroscopy. Appl Phys Lett 102, 173111.CrossRefGoogle Scholar
Lugg, N., Kothleitner, G., Shibata, N. & Ikuhara, Y. (2014). On the quantitativeness of EDS STEM. Ultramicroscopy 151, 150159.Google Scholar
Mannhart, J. & Schlom, D.G. (2010). Oxide interfaces–An opportunity for electronics. Science 327, 16071611.Google Scholar
Martin, L., Chu, Y.H. & Ramesh, R. (2010). Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater Sci Eng R 68, 89133.Google Scholar
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.Google Scholar
Nakagawa, N., Hwang, H.Y. & Muller, D.A. (2006). Why some interfaces cannot be sharp. Nat Mater 5, 204209.Google Scholar
Neish, M.J., Oxley, M.P., Guo, J., Sales, B.C., Allen, L.J. & Chisholm, M.F. (2015). Local observation of the site occupancy of Mn in a MnFePSi compound. Phys Rev Lett 114, 106101.Google Scholar
Oxley, M.P., Varela, M., Pennycook, T.J., van Benthem, K., Findlay, S.D., D’Alfonso, A.J., Allen, L.J. & Pennycook, S.J. (2007). Interpreting atomic-resolution spectroscopic images. Phys Rev B 76, 064303.Google Scholar
Sankara Rama Krishnan, P.S., Morozovska, A.N., Eliseev, E.A., Ramasse, Q.M., Kepaptsoglou, D., Liang, W.I., Chu, Y.H., Munroe, P. & Nagarajan, V. (2014). Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface. J Appl Phys 115, 054103.CrossRefGoogle Scholar
Spurgeon, S.R. (2015). XTL-Converter v1.1. Retrieved 1 October 2016 from http://www.github.com/ stevenspurgeon/xtl-converter.Google Scholar
Wang, P., D’Alfonso, A.J., Findlay, S.D., Allen, L.J. & Bleloch, A.L. (2008). Contrast reversal in atomic-resolution chemical mapping. Phys Rev Lett 101, 236102.Google Scholar
Zhang, K.H.L., Du, Y., Papadogianni, A., Bierwagen, O., Sallis, S., Piper, L.F.J., Bowden, M.E., Shutthanandan, V., Sushko, P.V. & Chambers, S.A. (2015). Perovskite Sr-doped LaCrO3 as a new p-type transparent conducting oxide. Adv Mater 27, 51915195.Google Scholar