Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T06:04:40.511Z Has data issue: false hasContentIssue false

Matrix Effects in the Energy Dispersive X-Ray Analysis of CaO-Al2O3-MgO Inclusions in Steel

Published online by Cambridge University Press:  04 November 2011

Petrus Christiaan Pistorius*
Affiliation:
Carnegie Mellon University, Department of Materials Science and Engineering, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Neerav Verma
Affiliation:
Carnegie Mellon University, Department of Materials Science and Engineering, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Energy dispersive X-ray microanalysis of micron-sized inclusions in steel is of considerable industrial importance. Measured spectra and Monte Carlo simulations show a significant effect of the steel matrix on analysis of CaO-Al2O3-MgO inclusions: the steel matrix filters the softer (Al and Mg) characteristic X-rays, increasing the relative height of the Ca peak. Bulk matrix correction methods would not result in correct inclusion compositions, but operating at a lower acceleration voltage shifts the effect to smaller inclusion sizes.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altay, A., Carter, C.B., Rulis, P., Ching, W.Y., Arslan, I. & Gülgün, M.A. (2010). Characterizing CA2 and CA6 using ELNES. J Solid State Chem 183, 17761784.CrossRefGoogle Scholar
Armstrong, J.T. (1991). Quantitative elemental analysis of individual microparticles with electron beam instruments. In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 261315. New York: Plenum Press.CrossRefGoogle Scholar
Armstrong, J.T. & Buseck, P.R. (1975). Quantitative chemical analysis of individual microparticles using the electron microprobe: Theoretical. Anal Chem 47, 21782192.CrossRefGoogle Scholar
ASTM (2008). Standard test methods for rating and classifying inclusions in steel using the scanning electron microscope. ASTM Standard E2142-08. West Conshohocken, PA: ASTM International.Google Scholar
Bennett, S. (2010). Kaye & Laby Tables of Physical & Chemical Constants, 16th ed. Available at www.kayelaby.npl.co.uk; last visited November 2010.Google Scholar
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92101.CrossRefGoogle ScholarPubMed
Goldstein, J.I., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J.R. (2003). Scanning Electron Microscopy and X-ray Microanalysis. 3rd ed. New York: Kluwer Academic.CrossRefGoogle Scholar
Haynes, W.M. (2010). CRC Handbook of Chemistry and Physics, 91st ed.Cleveland, OH: CRC Press.Google Scholar
Hubbell, J.H. & Seltzer, S.M. (2004). Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4). Available at www.physics.nist.gov/xaamdi (Last visited March 23, 2011). Gaithersburg, MD: National Institute of Standards and Technology.Google Scholar
Iyi, N., Göbbels, M. & Matsui, Y. (1995). The Al-rich part of the system CaO-Al2O3-MgO. Part II. Structural refinement of two new magnetoplumbite-related phases. J Solid State Chem 120, 364371.CrossRefGoogle Scholar
Peterson, R.C., Lager, G.A. & Hitterman, R.L. (1991). A time-of-flight neutron powder diffraction study of MgAl2O4 at temperatures up to 1273K. Am Mineral 76, 14551458.Google Scholar
Pouchou, J.-L. & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 3175. New York: Plenum Press.CrossRefGoogle Scholar
Pretorius, E.B., Oltmann, H.G. & Cash, T. (2010). The effective modification of spinel inclusions by Ca treatment in LCAK steel. Iron Steel Technol 7(7), 3144.Google Scholar
Ritchie, N.W.M. (2009). Spectrum simulation in DTSA-II. Microsc Microanal 15, 454468.CrossRefGoogle ScholarPubMed
Salvat, F., Escuder, J.A., Bote, D. & Llovet, X. (2007). Simulation of EPMA spectra using PENELOPE. Microsc Microanal 13(S2), 13881389.CrossRefGoogle Scholar
Story, S.R., Gupta, N., Casuccio, G.S. & Potter, M.S. (2010). Analysis of Ti-, Mg-, and Zr-bearing inclusions in ultra-low and low carbon steels. In AISTech 2010 Proceedings, vol. II, pp. 110. Warrendale, PA: Association for Iron & Steel Technology.Google Scholar
Story, S.R., Piccone, T.J. & Fruehan, R.J. (2004). Inclusion analysis to predict casting behavior. Iron Steel Technol 1(9), 163169.Google Scholar
Taş, A.T. (1998). Chemical preparation of the binary compounds in the calcia–alumina system by self-propagating combustion synthesis. J Am Ceram Soc 81, 28532863.CrossRefGoogle Scholar
Verma, N., Lind, M., Pistorius, P.C., Fruehan, R.J. & Potter, M. (2010). Modification of spinel inclusions by calcium in liquid steel. Iron Steel Technol 7(7), 189197.Google Scholar
Wang, Y., Valdez, M. & Sridhar, S. (2002). Formation of CaS on Al2O3-CaO inclusions during solidification of steels. Metall Mater Trans B 33B, 625632.CrossRefGoogle Scholar
Werlefors, T. & Ekelund, S. (1978). Automatic multiparameter characterization of non-metallic inclusions—An evaluation of the PASEM. Scand J Metall 7, 6070.Google Scholar