Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T23:17:15.615Z Has data issue: false hasContentIssue false

Mapping Chemical Bonds in Semiconductor Devices by Monitoring the Shifts of EELS Edges

Published online by Cambridge University Press:  29 August 2017

Pavel Potapov*
Affiliation:
GLOBALFOUNDRIES Dresden, Wilschdorfer Landstraße 101, 01109 Dresden, Germany
Elena L. Svistunova
Affiliation:
Moscow Region State University, Radio str. 10 A, 105005 Moscow, Russia
Alexander A. Gulyaev
Affiliation:
Moscow Region State University, Radio str. 10 A, 105005 Moscow, Russia
*
*Corresponding author. [email protected]
Get access

Abstract

Scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) can deliver information about variations of bonding at the nm scale. This is typically performed by analyzing the electron-loss near edge structure (ELNES) of given EELS edges. The present paper demonstrates an alternative way of a bonding examination through monitoring the EELS onset positions. Two conditions are essential for their accurate measurement. One (hardware) is using the dual EELS instrumentation that provides near simultaneous acquisition of low-loss and core-loss spectra. Another (software) is the least-square fitting of observed spectra to a reference spectrum. The combination of these hardware and software techniques reveals the positions of EELS onsets with the precision sufficient for mapping tiny variations of bonding. The paper shows that the method is capable of helping to solve practical tasks of nanoscale engineering like the analysis of modern CMOS devices.

Type
Materials Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angrstrom resolution using aberration corrected optics. Nature 416, 617620.CrossRefGoogle Scholar
Brown, L., Batson, P.E., Dellbye, N. & Krivanek, O.L. (2015). Brief history of the Cambridge STEM aberration correction project and its progeny. Ultramicroscopy 157, 8890.CrossRefGoogle ScholarPubMed
Egerton, R.F. (2009). Electron energy-loss spectroscopy in the electron microscope. Rep Prog Phys 72, 016502.CrossRefGoogle Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed Berlin: Springer.CrossRefGoogle Scholar
Fan, J. & Gijbels, I. (1996). Local Polynomial Modelling and Its Applications: From Linear Regression to Nonlinear Regression, 3rd ed., New York: Chapman and Hall/CRC.Google Scholar
Gloter, A., Badjeck, V., Bocher, L., Brun, N., Marsh, K., Marinova, M., Tence, M., Walls, M., Sobelli, A., Stephan, O. & Colliex, C. (2017). Atomically resolved mapping of EELS fine structures. Material Science in Semiconductor Processing. 65, 217.Google Scholar
Kimoto, K. & Matsui, Y. (2002). Software technique to realize about 0.3 eV energy resolution using 300 kV FEG-TEM. J Microsc 208, 224228.Google Scholar
Kohno, Y., Kaneyama, T., Ohkura, Y., Kondo, Y. & Isabell, T. (2010). Development of a cold field-emission gun for a 200 kV atomic resolution electron microscope. Microsc Anal 59(Suppl), 1113.Google Scholar
Krivanek, O.L., Lovejoy, T.C., Dellby, N., Aoki, T., Carpenter, R.W., Rez, P., Soignard, E., Zhu, J., Batson, P.E., Lagos, M.J., Egerton, R.F. & Crozier, P.A. (2014). Vibrational spectroscopy in the electron microscope. Nature 514, 209212.Google Scholar
Maigne, M. & Twesten, R.D. (2009). Review of recent advances in spectrum imaging and its extension to reciprocal space. J Electron Microsc 58, 99109.Google Scholar
Muller, D.A. (1999). Why changes in bond lengths and cohesion lead to core-level shifts in metals, and consequences for the spatial difference method. Ultramicroscopy 78, 163174.Google Scholar
Muller, D.A., Fitting Kourkoutis, L., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic scale chemical mapping of composition and bonding by abberation corrected microscopy. Science 319, 10731076.Google Scholar
Mundy, J.A., Mao, Q., Brooks, C.M., Schlom, D.G. & Muller, D.A. (2012). Atomic-resolution chemical imaging of oxygen local bonding environments by electron energy loss spectroscopy. Appl Phys Lett 101, 042907.Google Scholar
Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W. & Powell, C.J. (2012). NIST X-ray Photoelectron Spectroscopy Database https://srdata.nist.gov/xps/ (retrieved June 6, 2000).Google Scholar
Nicotra, G., Deretzis, I., Scuderi, M., Spinella, C., Longo, P., Yakimova, R., Giannazzo, F. & La Magna, A. (2015). Interface disorder probed at the atomic scale for graphene grown on the C face of SiC. Phys Rev B 91, 155411.CrossRefGoogle Scholar
Pennycook, S.J., Chisholmand, M.F., Lupini, A.R., Varela, M., Borisevich, A.Y., Oxley, M.P., Luo, W.D., van Benthem, K., Oh, S.-H., Sales, D.L., Molina, S.I., Garcia-Barriocanal, J., Leon, C., Santamaria, J., Rashkeev, S.N. & Pantelidesk, S.T. (2009). Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems. Philos Trans R Soc A 367, 8890.Google Scholar
Potapov, P.L. & Scryvers, D. (2004). Measuring the absolute position of EELS ionisation edges in a TEM. Ultramicroscopy 99, 7385.Google Scholar
Turner, S., Verbeeck, J., Ramezanipour, F., Greedan, J.E., Van Tendeloo, G. & Botton, G.A. (2012). Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy. Chem Mater 24, 19041909.CrossRefGoogle Scholar
Scott, J., Thomas, P.J., MacKenzie, M., McFadzean, S., Wilbrink, J., Craven, A.J. & Nicholson, W.A.P. (2008). Near simultaneous dual energy range EELS spectrum imaging. Ultramicroscopy 108, 15861594.CrossRefGoogle ScholarPubMed
Solid State Technology (2008). FEI releases X-FEG extreme field emission gun. http://electroiq.com/blog/2008/09/fei-releases-x-feg-extreme-field-emission-gun/ (retrieved September 3, 2008).Google Scholar
Tan, H., Turner, S., Yucelen, E., Verbeeck, J. & Van Tendeloo, G. (2011). 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys Rev Lett 107, 107602.CrossRefGoogle ScholarPubMed
Torres-Pardo, A., Gloter, A., Zubko, P., Jecklin, N., Lichtensteiger, C., Colliex, C., Triscone, J.-M. & Stephan, O. (2011). Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale. Phys Rev B 84, 220102.Google Scholar
Varela, M., Oxley, M.P., Luo, W., Tao, J., Watanabe, M., Lupini, A.R., Pantelides, T. & Pennycook, S.J. (2009). Atomic-resolution imaging of oxidation states in manganites. Phys Rev B. 79, 085117.CrossRefGoogle Scholar