Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T08:57:41.589Z Has data issue: false hasContentIssue false

Ma-PbFRET: Multiple Acceptors FRET Measurement Based on Partial Acceptor Photobleaching

Published online by Cambridge University Press:  25 January 2013

Huaina Yu
Affiliation:
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
Jianwei Zhang
Affiliation:
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
Huali Li
Affiliation:
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
Tongsheng Chen*
Affiliation:
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
*
*Corresponding author. E-mail: [email protected], [email protected]
Get access

Abstract

Fluorescence resonance energy transfer (FRET) measurement based on partial acceptor photobleaching (PbFRET) is easy to implement without external references. However, the current PbFRET methods are inapplicable to the construct with multiple acceptors, which largely increase the Förster distance. Here, we proposed a linear theory for the dependence of the acceptor photobleaching probability of construct with multiple acceptors on the photobleaching degree (x) and developed a multiple acceptors PbFRET method (Ma-PbFRET) to measure the FRET efficiency of construct with multiple acceptors (n) by measuring the fluorescence intensities of both donor and acceptor channels before and after acceptor photobleaching. The Ma-PbFRET method was validated by measuring the FRET efficiency of construct with two or three acceptors under different x in living cells. Our experimental results demonstrate that the Ma-PbFRET method is capable of exactly quantifying the FRET efficiency of construct with multiple acceptors, providing a simple and powerful tool to investigate the assembly/disassembly of biomolecular complexes with larger distance in living cells.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, M.H. & Imperiali, B. (2005). Protein oligomerization: How and why. Bioorgan Med Chem 13(17), 50135020.CrossRefGoogle ScholarPubMed
André, I., Strauss, C.E., Kaplan, D.B., Bradley, P. & Baker, D. (2008). Emergence of symmetry in homooligomeric biological assemblies. Proc Natl Acad Sci USA 105(42), 1614816152.CrossRefGoogle ScholarPubMed
Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. & Webb, W.W. (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9), 10551069.CrossRefGoogle ScholarPubMed
Blanchard, S.C., Kim, H.D., Gonzalez, R.L., Puglisi, J.D. & Chu, S. (2004). tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci USA 101(35), 1289312898.CrossRefGoogle ScholarPubMed
Bojarski, P., Kulak, L., Walczewska-Szewc, K., Synak, A., Marzullo, V.M., Luini, A. & D'Auria, S. (2011). Long-distance FRET analysis: A Monte Carlo simulation study. J Phys Chem B 115(33), 1012010125.CrossRefGoogle ScholarPubMed
Cantor, C.R. & Schimmel, P.R. (1980). Biophysical Chemistry Part II: Techniques for the Study of Biological Structure and Function. San Francisco, CA: W.H. Freeman and Company.Google Scholar
Chen, H., Puhl, H.L. 3rd, Koushik, S.V., Vogel, S.S. & Ikeda, S.R. (2006). Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys J 91(5), L39L41.CrossRefGoogle ScholarPubMed
Chen, Y., Mauldin, J.P., Day, R.N. & Periasamy, A. (2007). Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J Microsc 228(Pt2), 139152.CrossRefGoogle ScholarPubMed
Chen, Y. & Periasamy, A. (2006). Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei. J Fluoresc 16(1), 95104.CrossRefGoogle ScholarPubMed
Dunn, T.A., Wang, C.T., Colicos, M.A., Zaccolo, M., Dipilato, L.M., Zhang, J., Tsien, R.Y. & Feller, M.B. (2006). Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci 26(49), 1280712815.CrossRefGoogle ScholarPubMed
Düssmann, H., Rehm, M., Concannon, C.G., Anguissola, S., Würstle, M., Kacmar, S., Völler, P., Huber, H.J. & Prehn, J.H. (2010). Single-cell quantification of Bax activation and mathematical modelling suggest pore formation on minimal mitochondrial Bax accumulation. Cell Death Differ 17(2), 278290.CrossRefGoogle ScholarPubMed
Elangovan, M., Wallrabe, H., Chen, Y., Day, R.N., Barroso, M. & Periasamy, A. (2003). Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29(1), 5873.CrossRefGoogle ScholarPubMed
Elder, A.D., Domin, A., Kaminski Schierle, G.S., Lindon, C., Pines, J., Esposito, A. & Kaminski, C.F. (2009). A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission. J R Soc Interface 6, S59S81.CrossRefGoogle Scholar
Goodsell, D.S. & Olson, A.J. (2000). Structural symmetry and protein function. Annu Rev Biophys Biomol Struct 29, 105153.CrossRefGoogle ScholarPubMed
Gordon, G.W., Berry, G., Liang, X.H., Levine, B. & Herman, B. (1998). Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74(5), 27022713.CrossRefGoogle ScholarPubMed
Ibraheem, A. & Campbell, R.E. (2010). Designs and applications of fluorescent protein-based biosensors. Curr Opin Chem Biol 14, 3036.CrossRefGoogle Scholar
Jalink, K. & Van Rheenen, J. (2009). FilterFRET: Quantitative imaging of sensitized emission. In FRET and FLIM Techniques, Gadella, T.W.J. (Ed.), pp. 289349. Amsterdam: Elsevier.CrossRefGoogle Scholar
Kenworthy, A.K. & Edidin, M. (1998). Distribution of a glycosylphosphatidyl-inositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 Å using imaging fluorescence resonance energy transfer. J Cell Biol 142(1), 6884.CrossRefGoogle Scholar
Koushik, S.V., Blank, P.S. & Vogel, S.S. (2009). Anomalous surplus energy transfer observed with multiple FRET acceptors. PloS One 4(11), e8031. CrossRefGoogle ScholarPubMed
Koushik, S.V. & Vogel, S.S. (2008). Energy migration alters the fluorescence lifetime of Cerulean: Implications for fluorescence lifetime imaging Förster resonance energy transfer measurements. J Biomed Opt 13(3), 031204. Google Scholar
Kulzer, F. & Orrit, M. (2004). Single-molecule optics. Annu Rev Phys Chem 55, 585611.CrossRefGoogle ScholarPubMed
Lakowicz, J.R. (1999). Principles of Fluorescence Spectroscopy. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy, 3rd ed. Singapore: Springer.CrossRefGoogle Scholar
Lalonde, S., Ehrhardt, D.W., Loqué, D., Chen, J., Rhee, S.Y. & Frommer, W.B. (2008). Molecular and cellular approaches for the detection of protein-protein interactions: Latest techniques and current limitations. Plant J 53(3), 610635.CrossRefGoogle ScholarPubMed
Lee, N.K., Kapanidis, A.N., Koh, H.R., Korlann, Y., Ho, S.O., Kim, Y., Gassman, N., Kim, S.K. & Weiss, S. (2007). Three-color alternating-laser excitation of single molecules: Monitoring multiple interactions and distances. Biophys J 92(1), 303312.CrossRefGoogle ScholarPubMed
Levy, S., Wilms, C.D., Brumer, E., Kahn, J., Pnueli, L., Arava, Y., Eilers, J. & Gitler, D. (2011). SpRET: Highly sensitive and reliable spectral measurement of absolute FRET efficiency. Microsc Microanal 17(2), 176190.CrossRefGoogle ScholarPubMed
Li, H.L., Yu, H.N. & Chen, T.S. (2012). Partial acceptor photobleaching-based quantitative FRET method completely overcoming emission spectral crosstalks. Microsc Microanal 18(5), 10211029.CrossRefGoogle ScholarPubMed
Liang, L., Wang, X., Xing, D., Chen, T.S. & Chen, W.R. (2009). Noninvasive determination of cell nucleoplasmic viscosity by fluorescence correlation spectroscopy. J Biomed Opt 14(2), 024013. CrossRefGoogle ScholarPubMed
Maliwal, B.P., Raut, S., Fudala, R., D'auria, S., Marzullo, V.M., Luini, A., Gryczynski, I. & Gryczynski, Z. (2012). Extending Förster resonance energy transfer measurements beyond 100 Å using common organic fluorophores: Enhanced transfer in the presence of multiple acceptors. J Biomed Opt 17(1), 011006. Google Scholar
Megías, D., Marrero, R., Martínez Del Peso, B., García, M.A., Bravo-Cordero, J.J., García-Grande, A., Santos, A. & Montoya, M.C. (2009). Novel lambda FRET spectral confocal microscopy imaging method. Microsc Res Techniq 72(1), 111.CrossRefGoogle ScholarPubMed
Mirshahi, T. & Logothetis, D.E. (2002). GIRK channel trafficking: Different paths for different family members. Mol Interv 2(5), 289291.CrossRefGoogle ScholarPubMed
Pan, W.L., Qu, J. L., Chen, T.S., Sun, L. & Qi, J. (2009). FLIM and emission spectral analysis of caspase-3 activation inside single living cell during anticancer drug-induced cell death. Eur Biophys J 38(4), 447456.CrossRefGoogle ScholarPubMed
Pietraszewska-Bogiel, A. & Gadella, T.W. (2011). FRET microscopy: From principle to routine technology in cell biology. J Microsc 241(2), 111118.CrossRefGoogle ScholarPubMed
Plaxco, K.W. & Gross, M. (2009). Protein complexes: The evolution of symmetry. Curr Biol 19(1), R25R26.CrossRefGoogle ScholarPubMed
Raarup, M.K., Fjorback, A.W., Jensen, S.M., Muller, H.K., Kjaergaard, M.M., Poulsen, H., Wiborg, O. & Nyengaard, J.R. (2009). Enhanced yellow fluorescent protein photoconversion to a cyan fluorescent protein-like species is sensitive to thermal and diffusion conditions. J Biomed Opt 14(3), 034039. CrossRefGoogle ScholarPubMed
Sarkar, P., Koushik, S.V., Vogel, S.S., Gryczynski, I. & Gryczynski, Z. (2009). Photophysical properties of cerulean and venus fluorescent proteins. J Biomed Opt 14(3), 034047. CrossRefGoogle ScholarPubMed
Sgourakis, N.G., Lange, O.F., Dimaio, F., Andre, I., Fitzkee, N.C., Rossi, P., Montelione, G.T., Bax, A. & Baker, D. (2011). Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings. J Am Chem Soc 133(16), 62886298.CrossRefGoogle ScholarPubMed
Sun, Y.S., Wallrabe, H., Booker, C.F., Day, R.N. & Periasamy, A. (2010). Three-color spectral FRET microscopy localizes three interacting proteins in living cells. Biophys J 99(4), 12741283.CrossRefGoogle ScholarPubMed
Takemoto, K., Nagai, T., Miyawaki, A. & Miura, M. (2003). Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160, 235243.Google Scholar
Thaler, C., Koushik, S.V., Blank, P.S. & Vogel, S.S. (2005). Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys J 89(4), 27362749.CrossRefGoogle ScholarPubMed
Tramier, M., Zahid, M., Mevel, J.C., Masse, M.J. & Coppey-Moisan, M. (2006). Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 69(1), 933939.CrossRefGoogle ScholarPubMed
Valentin, G., Verheggen, C., Piolot, T., Neel, H., Coppey-Moisan, M. & Bertrand, E. (2005). Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nat Methods 2(11), 801.CrossRefGoogle ScholarPubMed
Verkman, A.S. (2002). Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 27(1), 2733.Google Scholar
Wang, F., Chen, T.S., Xing, D., Wang, J.J. & Wu, Y.X. (2005). Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation. Lasers Surg Med 36(1), 27.CrossRefGoogle ScholarPubMed
Wang, L.X., Chen, T.S., Qu, J.L. & Wei, X.B. (2009). Quantitative analysis of caspase-3 activation by fitting fluorescence emission. Micron 40(8), 811820.CrossRefGoogle ScholarPubMed
Wang, L.X., Chen, T.S., Qu, J.L. & Wei, X.B. (2010). Photobleaching-based quantitative analysis of fluorescence resonance energy transfer inside single living cell. J Fluoresc 20(1), 2735.CrossRefGoogle Scholar
Wolynes, P.G. (1996). Symmetry and the energy landscapes of biomolecules. Proc Natl Acad Sci USA 93(25), 1424914255.CrossRefGoogle ScholarPubMed
Wouters, F.S., Bastiaens, P.I., Wirtz, K.W. & Jovin, T.M. (1998). FRET microscopy demonstrates molecular association of non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes. EMBO J 17(24), 71797189.CrossRefGoogle ScholarPubMed
Yu, H.N., Zhang, J.W., Li, H.L., Qu, J.L. & Chen, T.S. (2012). An empirical quantitative FRET method for multiple acceptors based on partial acceptor photobleaching. Appl Phys Lett 100, 253701. CrossRefGoogle Scholar
Zal, T. & Gascoigne, N.R. (2004). Photobleaching-corrected FRET efficiency imaging of live cells. Biophys J 86(6), 39233939.CrossRefGoogle ScholarPubMed