Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T11:01:43.628Z Has data issue: false hasContentIssue false

Locally Condensed Water as a Solution for In Situ Wet Corrosion Electron Microscopy

Published online by Cambridge University Press:  13 February 2020

Majid Ahmadi*
Affiliation:
Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2628 CJDelft, The Netherlands
Frans D. Tichelaar
Affiliation:
Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2628 CJDelft, The Netherlands
Andreas Ihring
Affiliation:
Leibniz-IPHT, Leibniz Institut für Photonische Technologien e.V., Albert-Einstein-Str. 9, 07745Jena, Germany
Michael Kunze
Affiliation:
HSG-IMIT-Institut für Mikro-und Informationstechnik der Hahn-Schickard-Gesellschaft e.V., Wilhelm-Schickard-Str. 10, 78052Villingen-Schwenningen, Germany
Sophie Billat
Affiliation:
HSG-IMIT-Institut für Mikro-und Informationstechnik der Hahn-Schickard-Gesellschaft e.V., Wilhelm-Schickard-Str. 10, 78052Villingen-Schwenningen, Germany
Zahra Kolahdouz Esfahani
Affiliation:
Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2628 CJDelft, The Netherlands
Henny W. Zandbergen
Affiliation:
Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2628 CJDelft, The Netherlands
*
*Author for correspondence: Majid Ahmadi, E-mail: [email protected]
Get access

Abstract

In microstructural corrosion studies, knowledge on the initiation of corrosion on an nm-scale is lacking. In situ transmission electron microscope (TEM) studies can elucidate where/how the corrosion starts, provided that the proper corrosive conditions are present during the investigation. In wet corrosion studies with liquid cell nanoreactors (NRs), the liquid along the electron beam direction leads to strong scattering and therefore image blurring. Thus, a quick liquid removal or thickness control of the liquid layer is preferred. This can be done by the use of a Peltier element embedded in an NR. As a prelude to such in situ work, we demonstrate the local wetting of a TEM sample, by creating a temperature decrease of 10 ± 2°C on the membrane of an NR with planar Sb/BiSb thermoelectric materials for the Peltier element. TEM samples were prepared and loaded in an NR using a dual-beam focused ion beam scanning electron microscope. A mixture of water vapor and carrier gas was passed through a chamber, which holds the micro-electromechanical system Peltier device and resulted in quick formation of a water layer/droplets on the sample. The TEM analysis after repeated corrosion of the same sample (ex situ studies) shows the onset and progression of O2 and H2S corrosion of the AA2024-T3 alloy and cold-rolled HCT980X steel lamellae.

Type
Software and Instrumentation
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current Address: Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, the Netherlands

References

Auge, J, Hauptmann, P, Eichelbaum, F & Rösler, S (1994). Quartz crystal microbalance sensor in liquids. Sens Actuators B 19(1–3), 518522. https://doi.org/10.1016/0925-4005(93)00983-6CrossRefGoogle Scholar
Buchheit, RG (1995). A compilation of corrosion potentials reported for intermetallic phases in aluminum alloys. J Electrochem Soc 142(11), 3994. https://doi.org/10.1149/1.2048447CrossRefGoogle Scholar
Buchheit, RG (1997). Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3. J Electrochem Soc 144(8), 2621. https://doi.org/10.1149/1.1837874CrossRefGoogle Scholar
Buchheit, RG, Martinez, MA & Montes, LP (2000). Evidence for Cu ion formation by dissolution and dealloying the Al2CuMg intermetallic compound in rotating ring-disk collection experiments. J Electrochem Soc 147(1), 119124. https://doi.org/10.1149/1.1393164CrossRefGoogle Scholar
Chee, SW, Pratt, SH, Hattar, K, Duquette, D, Ross, FM & Hull, R (2015). Studying localized corrosion using liquid cell transmission electron microscopy. Chem Commun 51(1), 168171. https://doi.org/10.1039/C4CC06443GCrossRefGoogle ScholarPubMed
Chee, SW, Ross, FM, Duquette, D & Hull, R (2013). Studies of corrosion of Al thin films using liquid cell transmission electron microscopy. MRS Proc 1525, mrsf12-1525-ss11-03. https://doi.org/10.1557/opl.2013.558CrossRefGoogle Scholar
de Jonge, N, Houben, L, Dunin-Borkowski, RE & Ross, FM (2019). Resolution and aberration correction in liquid cell transmission electron microscopy. Nat Rev Mater 4(1), 6178. https://doi.org/10.1038/s41578-018-0071-2CrossRefGoogle Scholar
de Jonge, N & Ross, FM (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6(11), 695704. https://doi.org/10.1038/nnano.2011.161CrossRefGoogle ScholarPubMed
Dortwegt, R & Maughan, EV (2002). The chemistry of copper in water and related studies planned at the advanced photon source. In PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268), June 18–22, 2001, pp. 1456–1458. Chicago, IL, USA: IEEE. https://doi.org/10.1109/pac.2001.986712CrossRefGoogle Scholar
Hashimoto, T, Zhang, X, Zhou, X, Skeldon, P, Haigh, SJ & Thompson, GE (2016). Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging. Corros Sci 103, 157164. https://doi.org/10.1016/j.corsci.2015.11.013CrossRefGoogle Scholar
Hughes, AE, MacRae, C, Wilson, N, Torpy, A, Muster, TH & Glenn, AM (2010). Sheet AA2024-T3: A new investigation of microstructure and composition. Surf Interface Anal 42(4), 334338. https://doi.org/10.1002/sia.3163CrossRefGoogle Scholar
Hun Park, J, Chee, SW, Kodambaka, S & Ross, FM (2015). In situ LC-TEM studies of corrosion of metal thin films in aqueous solutions. Microsc Microanal 21(S3), 17911792. https://doi.org/10.1017/S1431927615009733CrossRefGoogle Scholar
Husairi, M, Rouhi, J, Alvin, K, Atikah, Z, Rusop, M & Abdullah, S (2014). Developing high-sensitivity ethanol liquid sensors based on ZnO/Porous Si nanostructure surfaces using an electrochemical impedance technique. Semicond Sci Technol 29(7). https://doi.org/10.1088/0268-1242/29/7/075015CrossRefGoogle Scholar
Ihring, A, Kessler, E, Dillner, U, Schinkel, U, Kunze, M & Billat, S (2015). A planar thin-film Peltier cooler for the thermal management of a dew-point sensor system. J Microelectromech Syst 24(4), 990996. https://doi.org/10.1109/JMEMS.2014.2367103CrossRefGoogle Scholar
Koyama, M, Akiyama, E, Lee, YK, Raabe, D & Tsuzaki, K (2017). Overview of hydrogen embrittlement in high-Mn steels. Int J Hydrogen Energy 42(17), 1270612723. https://doi.org/10.1016/j.ijhydene.2017.02.214CrossRefGoogle Scholar
Lou, A & Pethica, BA (1997). Adsorption of hexane at the water/vapor interface. Langmuir 13(19), 49334934. https://doi.org/10.1021/la970220zCrossRefGoogle Scholar
Malladi, SRK, Tichelaar, FD, Xu, Q, Wu, MY, Terryn, H, Mol, JMC, Hannour, F & Zandbergen, HW (2013). Quasi in situ analytical TEM to investigate electrochemically induced microstructural changes in alloys: AA2024-T3 as an example. Corros Sci 69, 221225. https://doi.org/10.1016/j.corsci.2012.12.006CrossRefGoogle Scholar
National Research Council (2011), Committee on Research Opportunities in Corrosion Science and Engineering. vol. 53. Washington, DC: National Academies Press. https://doi.org/10.17226/13032Google Scholar
Obispo, HM, Murr, LE, Arrowood, RM & Trillo, EA (2001). Copper nucleation and growth during the corrosion of aluminum alloy 2524 in sodium chloride solutions. J Mater Sci 36(17), 40794088. https://doi.org/10.1023/A:1017975728838Google Scholar
Obuka, , Nnaemeka, SP, Celestine, ON, Ikwu, , Gracefield, RO, Chukwumuanya, & Emmanuel, O (2012). Review of corrosion kinetics and thermodynamics of CO2 and H2S corrosion effects and associated prediction/evaluation on oil and gas pipeline system. Int J Sci Technol Res 1(4), 156162.Google Scholar
Örnek, C, Liu, M, Pan, J, Jin, Y & Leygraf, C (2018). Volta potential evolution of intermetallics in aluminum alloy microstructure under thin aqueous adlayers: A combined DFT and experimental study. Top Catal 61(9–11), 11691182. https://doi.org/10.1007/s11244-018-0939-9CrossRefGoogle Scholar
Paussa, L, Andreatta, F, De Felicis, D, Bemporad, E & Fedrizzi, L (2014). Investigation of AA2024-T3 surfaces modified by cerium compounds: A localized approach. Corros Sci 78, 215222. https://doi.org/10.1016/j.corsci.2013.10.001CrossRefGoogle Scholar
Pinkowitz, A, Chee, SW, Engler, BJ, Duquette, DJ & Hull, R (2016). An in situ transmission electron microscopy study of localized corrosion on aluminum. MRS Adv 1(25), 18771882. https://doi.org/10.1557/adv.2016.334CrossRefGoogle Scholar
Robertson, IM, Sofronis, P, Nagao, A, Martin, ML, Wang, S, Gross, DW & Nygren, KE (2015). Hydrogen embrittlement understood. Metall Mater Trans A 46(6), 23232341. https://doi.org/10.1007/s11661-015-2836-1CrossRefGoogle Scholar
Schmutz, P & Frankel, GS (1998). Corrosion study of AA2024-T3 by scanning Kelvin Probe force microscopy and in situ atomic force microscopy scratching. J Electrochem Soc 145(7), 22952306. https://doi.org/10.1149/1.1838634CrossRefGoogle Scholar
Sun, W & Nesic, S (2007). A mechanistic model of H2S corrosion of mild steel. In NACE InternationalCorrosion Conference & Expo, No. 07655. Available at https://pdfs.semanticscholar.org/5a39/cfc21632e78d2347edd2f71f6b17e1892143.pdf.Google Scholar
Tsujikawa, S, Miyasaka, A, Ueda, M, Ando, S, Shibata, T, Haruna, T, Katahira, M, Yamane, Y, Aoki, T & Yamada, T (1993). Alternative for evaluating sour gas resistance of low-alloy steels and corrosion-resistant alloys. Corrosion 49(5), 409419. https://doi.org/10.5006/1.3316068CrossRefGoogle Scholar
Wang, CC, Weng, YC & Chou, TC (2006). An amperometric acetone sensor by using an electro-deposited Pb-modified electrode. Z Naturforsch B J Chem Sci 61(5), 560564. https://doi.org/10.1515/znb-2006-0509CrossRefGoogle Scholar
Wee Chee, S, Ross, FM, Duquette, D & Hull, R (2014). Corrosion of metal films observed using in situ and ex situ electron microscopy. Microsc Microanal 20(Suppl. S3), 15401541. https://doi.org/10.1017/S143192761400943XCrossRefGoogle Scholar
Williams, G, Coleman, AJ & Neil McMurray, H (2010 a). Inhibition of aluminium alloy AA2024-T3 pitting corrosion by copper complexing compounds. Electrochim Acta 55(20), 59475958. https://doi.org/10.1016/j.electacta.2010.05.049CrossRefGoogle Scholar
Williams, G, McMurray, HN & Grace, R (2010 b). Inhibition of magnesium localised corrosion in chloride containing electrolyte. Electrochim Acta 55(27), 78247833. https://doi.org/10.1016/j.electacta.2010.03.023CrossRefGoogle Scholar
Yasakau, KA, Zheludkevich, ML & Ferreira, MGS (2018). Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection. In Intermetallic Matrix Composites, Rahul Mitra (Ed.), pp. 425462. Aveiro, Portugal: Woodhead Publishing.CrossRefGoogle Scholar
Zhao, Y, Du, W, Koe, B, Connolley, T, Irvine, S, Allan, PK, Schlepütz, CM, et al. (2018). 3D Characterisation of the Fe-rich intermetallic phases in recycled Al alloys by synchrotron X-ray microtomography and skeletonisation. Scr Mater 146, 321326. https://doi.org/10.1016/j.scriptamat.2017.12.010CrossRefGoogle Scholar
Zhu, Y, Sun, K & Frankel, GS (2018). Intermetallic phases in aluminum alloys and their roles in localized corrosion. J Electrochem Soc 165(11), C807C820. https://doi.org/10.1149/2.0931811jesCrossRefGoogle Scholar
Supplementary material: File

Ahmadi et al. supplementary material

Ahmadi et al. supplementary material 1

Download Ahmadi et al. supplementary material(File)
File 4.4 MB

Ahmadi et al. supplementary material

Ahmadi et al. supplementary material 2

Download Ahmadi et al. supplementary material(Video)
Video 61.5 MB

Ahmadi et al. supplementary material

Ahmadi et al. supplementary material 3

Download Ahmadi et al. supplementary material(Video)
Video 12.4 MB