Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T14:19:40.006Z Has data issue: false hasContentIssue false

A Layered Structure in the Organic Envelopes of the Prismatic Layer of the Shell of the Pearl Oyster Pinctada margaritifera (Mollusca, Bivalvia)

Published online by Cambridge University Press:  24 December 2009

Y. Dauphin*
Affiliation:
UMR IDES 8148, Bat. 504, Université Paris XI – Orsay, 91405 Orsay Cedex, France
A. Brunelle
Affiliation:
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
M. Cotte
Affiliation:
ID21, European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble Cedex, France
J.P. Cuif
Affiliation:
UMR IDES 8148, Bat. 504, Université Paris XI – Orsay, 91405 Orsay Cedex, France
B. Farre
Affiliation:
UMR IDES 8148, Bat. 504, Université Paris XI – Orsay, 91405 Orsay Cedex, France
O. Laprévote
Affiliation:
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France IFR 71, Faculté de Pharmacie, Université Paris Descartes, 4, Avenue de l'Observatoire, 75006 Paris, France
A. Meibom
Affiliation:
UMS 2679 LEME, Museum National d'Histoire Naturelle, 61 rue Buffon, 75005 Paris, France
M. Salomé
Affiliation:
ID21, European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble Cedex, France
C.T. Williams
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The organic interprismatic layers of the mollusc Pinctada margaritifera are studied using a variety of highly spatially-resolved techniques to establish their composition and structure. Our results show that both the interlamellar sheets of the nacre and interprismatic envelopes form layered structures. Additionally, these organic layers are neither homogeneous in composition, nor continuous in their structure. Both structures play a major role in the biomineralization process and act as a boundary between mineral units.

Type
Biological Imaging: Techniques Development and Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aizenberg, J. (2000). Patterned crystallization of calcite in vivo and in vitro. J Cryst Growth 211, 143148.CrossRefGoogle Scholar
Aizenberg, J. (2004). Multilevel control of calcite crystallization using self-assembled monolayers. In Biomineralization (BIOM2001): Formation, Diversity, Evolution and Application, Kobayashi, I. & Ozawa, H. (Eds.), pp. 209214. Kanagawa, Japan: Tokai University Press.Google Scholar
Berman, A., Hanson, J., Leiserowitz, L., Koetzle, T.F., Weiner, S. & Addadi, L. (1993). Biological control of crystal texture: A widespread strategy for adapting crystal properties to function. Science 259, 776779.CrossRefGoogle ScholarPubMed
Brunelle, A. & Laprévote, P. (2009). Lipid imaging with cluster time-of-flight secondary ion mass spectrometry. Anal Bioanal Chem 393, 3135.Google Scholar
Cuif, J.P., Dauphin, Y., Denis, A., Gaspard, D. & Keller, J.P. (1983). Etude des caractéristiques de la phase minérale dans les structures prismatiques du test de quelques Mollusques. Bull Mus Nat Hist Nat Paris 4è sér., A3, 679717.Google Scholar
Cuif, J.P., Dauphin, Y., Mutvei, H. & Denis, A. (1989). Mineralogy, chemistry and ultrastructure of the external shell layer in ten species of Haliotis with reference to Haliotis tuberculata (Mollusca: Archaeogastropoda). Bull Geol Inst Univ Uppsala N.S., 15, 738.Google Scholar
Dauphin, Y. (2002). Comparison of the soluble matrices of the calcitic prismatic layer of Pinna nobilis (Mollusca, Bivalvia, Pteriomorpha). Comp Biochem Physiol A 132, 577590.CrossRefGoogle ScholarPubMed
Dauphin, Y. (2003). Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves: Pinna nobilis and Pinctada margaritifera. J Biol Chem 278, 1516815177.CrossRefGoogle ScholarPubMed
Dauphin, Y., Ball, A.D., Cotte, M., Cuif, J.P., Meibom, A., Salomé, M., Susini, J. & Williams, C.T. (2008). Structure and composition of the nacre-prism transition in the shell of Pinctada margaritifera (Mollusca, Bivalvia). Anal Bioanal Chem 309, 16591669.Google Scholar
Dauphin, Y., Cuif, J.P., Doucet, J., Salomé, M., Susini, J. & Williams, C.T. (2003a). In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. J Struct Biol 142, 272280.Google Scholar
Dauphin, Y., Cuif, J.P., Salomé, M. & Susini, J. (2005). Speciation and distribution of sulfur in a mollusk shell as revealed by in situ maps using X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge. Am Mineral 90, 17481758.Google Scholar
Dauphin, Y., Guzman, N., Denis, A., Cuif, J.P. & Ortlieb, L. (2003b). Microstructure, nanostructure and composition of the shell of Concholepas concholepas (Gastropoda, Muricidae). Aquat Liv Res 16, 95103.Google Scholar
Grégoire, C. (1957). Topography of the organic components in mother-of-pearl. J Biophys Bioch Cytol 3, 798808.Google ScholarPubMed
Levi, Y., Albeck, S., Brack, A., Weiner, S. & Addadi, L. (1998). Control over aragonite crystal nucleation and growth: An in vitro study of biomineralization. Chem Eur J 4, 389396.Google Scholar
Levi-Kalisman, Y., Falini, G., Addadi, L. & Weiner, S. (2001). Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135, 817.Google Scholar
Mutvei, H. (1979). On the internal structures of the nacreous tablets in molluscan shells. Scan Elect Microsc II, 451462.Google Scholar
Mutvei, H. (1997). The nacreous layer in Mytilus, Nucula, and Unio (Bivalvia). Calcif Tiss Res 24, 1118.Google Scholar
Nakahara, H. (1983). Calcification of gastropod nacre. In Biomineralization and Biological Metal Accumulation, Westbroek, P. & Dejong, E.W. (Eds.), pp. 225230. Amsterdam: Reidl.Google Scholar
Nakahara, H. & Bevelander, G. (1971). The formation and growth of the prismatic layer of Pinctada radiata. Calc Tissue Res 7, 3145.Google Scholar
Nudelman, F., Gotliv, B.A., Addadi, L. & Weiner, S. (2006). Mollusk shell formation: Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J Struct Biol 153, 176187.Google Scholar
Robach, J.S., Stock, S.R. & Veis, A. (2006). Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy. J Struct Biol 155, 8795.Google Scholar
Vanhaeren, M.F., d'Errico, F., Stringer, C., James, S.L., Todd, J.A. & Mienis, H.K. (2006). Middle paleolithic shell beads in Israel and Algeria. Science 312, 17851788.Google Scholar
Voss-Foucart, M.F. & Grégoire, C. (1971). Biochemical composition and submicroscopic structure of matrices of nacreous conchiolin in fossil Cephalopods (Nautiloids and Ammonoids). Bull Instr Sci Nat Belg 47, 142.Google Scholar
Wada, K. (1961). Crystal growth of molluscan shells. Bull Natl Pearl Res Lab 36, 703828.Google Scholar
Wada, K. (1964). Studies on the mineralization of the calcified tissue in Molluscs. IV selective fixation of 45Ca into or onto the metachromatic matter in the processes of shell mineralization. Bull Jap Soc Sci Fish 30, 393399.Google Scholar
Weiner, S. & Addadi, L. (1991). Acidic macromolecules of mineralized tissues: The controllers of crystal formation. Trends Biochem Sci 16, 252256.CrossRefGoogle ScholarPubMed