Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T09:27:16.320Z Has data issue: false hasContentIssue false

Lattice Rectification in Atom Probe Tomography: Toward True Three-Dimensional Atomic Microscopy

Published online by Cambridge University Press:  08 March 2011

Michael P. Moody*
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Baptiste Gault
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Leigh T. Stephenson
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Ross K.W. Marceau
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Rebecca C. Powles
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Anna V. Ceguerra
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Andrew J. Breen
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Simon P. Ringer
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Atom probe tomography (APT) represents a significant step toward atomic resolution microscopy, analytically imaging individual atoms with highly accurate, though imperfect, chemical identity and three-dimensional (3D) positional information. Here, a technique to retrieve crystallographic information from raw APT data and restore the lattice-specific atomic configuration of the original specimen is presented. This lattice rectification technique has been applied to a pure metal, W, and then to the analysis of a multicomponent Al alloy. Significantly, the atoms are located to their true lattice sites not by an averaging, but by triangulation of each particular atom detected in the 3D atom-by-atom reconstruction. Lattice rectification of raw APT reconstruction provides unprecedented detail as to the fundamental solute hierarchy of the solid solution. Atomic clustering has been recognized as important in affecting alloy behavior, such as for the Al-1.1Cu-1.7Mg (at. %) investigated here, which exhibits a remarkable rapid hardening reaction during the early stages of aging, linked to clustering of solutes. The technique has enabled lattice-site and species-specific radial distribution functions, nearest-neighbor analyses, and short-range order parameters, and we demonstrate a characterization of solute-clustering with unmatched sensitivity and precision.

Type
Material Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87(88), 298304.CrossRefGoogle Scholar
Billinge, S.J.L. & Levin, I. (2007). The problem with determining atomic structure at the nanoscale. Science 316(5824), 561565.CrossRefGoogle ScholarPubMed
Blavette, D., Deconihout, B., Bostel, A., Sarrau, J.M., Bouet, M. & Menand, A. (1993). The tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale. Rev Sci Instrum 64(10), 29112919.CrossRefGoogle Scholar
Boll, T., Al-Kassab, T., Yuan, Y. & Liu, Z.G. (2007). Investigation of the site occupation of atoms in pure and doped TiAl/Ti3Al intermetallic. Ultramicroscopy 107(9), 796801.CrossRefGoogle ScholarPubMed
Cadel, E., Vurpillot, F., Larde, R., Duguay, S. & Deconihout, B. (2009). Depth resolution function of the laser assisted tomographic atom probe in the investigation of semiconductors. J Appl Phys 106(4), 044908-16.CrossRefGoogle Scholar
Camus, P.P., Larson, D.J. & Kelly, T.F. (1995). A method for reconstructing and locating atoms on the crystal-lattice in 3-dimensional atom-probe data. Appl Surf Sci 8788(1-4), 305310.CrossRefGoogle Scholar
Castell, M.R., Muller, D.A. & Voyles, P.M. (2003). Dopant mapping for the nanotechnology age. Nat Mater 2(3), 129131.CrossRefGoogle ScholarPubMed
Ceguerra, A.V., Moody, M.P., Stephenson, L.T., Marceau, R.K.W. & Ringer, S.P. (2010a). A three-dimensional Markov field approach for the analysis of atomic clustering in atom probe data. Philos Mag 90(12), 16571683.CrossRefGoogle Scholar
Ceguerra, A.V., Powles, R.C., Moody, M.P. & Ringer, S.P. (2010b). Quantitative description of atomic architecture in solid solutions: A generalized theory for multicomponent short-range order. Phys Rev B 82(13), 132201.CrossRefGoogle Scholar
Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59, 862866.CrossRefGoogle Scholar
Cowley, J.M. (1950). An approximate theory of order in alloys. Phys Rev 77(5), 669675.CrossRefGoogle Scholar
De Geuser, F., Lefebvre, W. & Blavette, D. (2006). 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy. Philos Mag Lett 86(4), 227234.CrossRefGoogle Scholar
De Geuser, F., Lefebvre, W., Danoix, F., Vurpillot, F., Forbord, B. & Blavette, D. (2007). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interf Anal 39(2-3), 268272.CrossRefGoogle Scholar
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102(9), 096101-14.CrossRefGoogle ScholarPubMed
Gault, B., De Geuser, F., Stephenson, L.T., Moody, M.P., Muddle, B.C. & Ringer, S.P. (2008a). Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14(4), 296305.CrossRefGoogle Scholar
Gault, B., Moody, M.P., De Geuser, F., Haley, D., Stephenson, L.T. & Ringer, S.P. (2009a). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95(3), 034103-13.CrossRefGoogle Scholar
Gault, B., Moody, M.P., De Geuser, F., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2010). Spatial resolution in atom probe tomography. Microsc Microanal 16(01), 99110.CrossRefGoogle ScholarPubMed
Gault, B., Moody, M.P., De Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009b). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105(3), 34913.CrossRefGoogle Scholar
Gault, B., Moody, M.P., Saxey, D.W., Cairney, J.M., Liu, Z., Zheng, R., Marceau, R.K.W., Liddicoat, P.V., Stephenson, L.T. & Ringer, S.P. (2008b). Atom probe tomography at the University of Sydney. In Advances in Materials Research—Frontiers in Materials Research. Berlin, Heidelberg: Springer.Google Scholar
Gehlen, P.C. & Cohen, J.B. (1965). Computer simulation of structure associated with local order in alloys. Phys Rev 139(3A), A844A855.CrossRefGoogle Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13(6), 437447.CrossRefGoogle ScholarPubMed
Geiser, B.P., Larson, D.J., Oltman, E., Gerstl, S., Reinhard, D., Kelly, T.F. & Prosa, T.J. (2009). Wide-field-of-view atom probe reconstruction. Microsc Microanal 15(S2), 292293 (CD-ROM).CrossRefGoogle Scholar
Gerold, V. & Kern, J. (1987). The determination of atomic interaction energies in solid-solutions from short-range order coefficients—An inverse Monte-Carlo method. Acta Metallurg 35(2), 393399.CrossRefGoogle Scholar
Haasen, P. (1996). Physical Metallurgy. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Haley, D., Petersen, T., Barton, G. & Ringer, S.P. (2009). Influence of field evaporation on radial distribution functions in atom probe tomography. Philos Mag 89(11), 925943.CrossRefGoogle Scholar
Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H. & Strait, D.R. (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10(3), 373383.CrossRefGoogle ScholarPubMed
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78(3), 031101-120.CrossRefGoogle ScholarPubMed
Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Muller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-angstrom information limit. Microsc Microanal 14(5), 469477.CrossRefGoogle ScholarPubMed
Krems, M., Zirbel, J., Thomason, M. & DuBois, R.D. (2005). Channel electron multiplier and channelplate efficiencies for detecting positive ions. Rev Sci Instrum 76(9), 093305-17.CrossRefGoogle Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford, UK: Oxford Science Publications, Clarendon Press.CrossRefGoogle Scholar
Moody, M., Gault, B., Stephenson, L. & Ringer, S. (2009a). Applications of spatial distribution maps for advanced atom probe reconstruction and data analysis. Microsc Microanal 15(S2), 246247 (CD-ROM).CrossRefGoogle Scholar
Moody, M.P., Gault, B., Haley, D., Stephenson, L.T. & Ringer, S.P. (2009b). Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815824.CrossRefGoogle ScholarPubMed
Moody, M.P., Stephenson, L.T., Ceguerra, A.V. & Ringer, S.P. (2008). Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc Res Techniq 71(7), 542550.CrossRefGoogle ScholarPubMed
Moody, M.P., Stephenson, L.T., Liddicoat, P.V. & Ringer, S.P. (2007). Contingency table techniques for three dimensional atom probe tomography. Microsc Res Techniq 70(3), 258268.CrossRefGoogle ScholarPubMed
Muller, E.W., Panitz, J.A. & McLane, S.B. (1968). Atom-probe field ion microscope. Rev Sci Instrum 39(1), 8386.CrossRefGoogle Scholar
Philippe, T., De Geuser, F., Duguay, S., Lefebvre, W., Cojocaru-Miredin, O., Da Costa, G. & Blavette, D. (2009). Clustering and nearest neighbour distances in atom-probe tomography. Ultramicroscopy 109(10), 13041309.CrossRefGoogle ScholarPubMed
Ringer, S.P. (2006). Advanced nanostructural analysis of aluminium alloys using atom probe tomography. Mater Sci Forum 519521, 2534.CrossRefGoogle Scholar
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Ann Rev Mat Res 37, 127158.CrossRefGoogle Scholar
Shariq, A., Al-Kassab, T., Kirchheim, R. & Schwarz, R.B. (2007). Exploring the next neighbourhood relationship in amorphous alloys utilizing atom probe tomography. Ultramicroscopy 107(9), 773780.CrossRefGoogle ScholarPubMed
Stephenson, L.T., Moody, M.P., Gault, B. & Ringer, S.P. (2010). Estimating the physical cluster-size distribution within materials using atom-probe. Microsc Res Techniq doi:10.1002/jemt.20958.Google ScholarPubMed
Stephenson, L.T., Moody, M.P., Liddicoat, P.V. & Ringer, S.P. (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal 13(6), 448463.CrossRefGoogle ScholarPubMed
Sudbrack, C.K., Noebe, R.D. & Seidman, D.N. (2006). Direct observations of nucleation in a nondilute multicomponent alloy. Phys Rev B 73(21), 212101-14.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2000a). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76(21), 31273129.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A., Cadel, E. & Blavette, D. (2000b). The spatial resolution of 3D atom probe in the investigation of single-phase materials. Ultramicroscopy 84(3-4), 213224.CrossRefGoogle ScholarPubMed
Vurpillot, F., Da Costa, G., Menand, A. & Blavette, D. (2001). Structural analyses in three-dimensional atom probe: A Fourier approach. J Microsc 203, 295302.CrossRefGoogle Scholar
Vurpillot, F., De Geuser, F., Da Costa, G. & Blavette, D. (2004). Application of Fourier transform and autocorrelation to cluster identification in the three-dimensional atom probe. J Microsc-Oxford 216, 234240.CrossRefGoogle ScholarPubMed
Vurpillot, F., Renaud, L. & Blavette, D. (2003). A new step towards the lattice reconstruction in 3DAP. Ultramicroscopy 95(1-4), 223229.CrossRefGoogle ScholarPubMed