Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-07T22:26:36.275Z Has data issue: false hasContentIssue false

Lateral Resolution Enhancement of Vertical Scanning Interferometry by Sub-Pixel Sampling

Published online by Cambridge University Press:  07 January 2014

Rolf S. Arvidson*
Affiliation:
MARUM/Geowissenschaften FB5, Klagenfurter Straße, Universität Bremen, 28359 Bremen, Germany Department of Earth Science MS-126, Rice University, 6100 Main Street, Houston, TX 77005, USA
Cornelius Fischer
Affiliation:
MARUM/Geowissenschaften FB5, Klagenfurter Straße, Universität Bremen, 28359 Bremen, Germany Department of Earth Science MS-126, Rice University, 6100 Main Street, Houston, TX 77005, USA
Dale S. Sawyer
Affiliation:
Department of Earth Science MS-126, Rice University, 6100 Main Street, Houston, TX 77005, USA
Gavin D. Scott
Affiliation:
Bell Laboratories, Alcatel-Lucent, 600 Mountain Avenue, Murray Hill, NJ 07974, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
Douglas Natelson
Affiliation:
Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
Andreas Lüttge
Affiliation:
MARUM/Geowissenschaften FB5, Klagenfurter Straße, Universität Bremen, 28359 Bremen, Germany Department of Earth Science MS-126, Rice University, 6100 Main Street, Houston, TX 77005, USA
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

We apply common image enhancement principles and sub-pixel sample positioning to achieve a significant enhancement in the spatial resolution of a vertical scanning interferometer. We illustrate the potential of this new method using a standard atomic force microscope calibration grid and other materials having motifs of known lateral and vertical dimensions. This approach combines the high vertical resolution of vertical scanning interferometry and its native advantages (large field of view, rapid and nondestructive data acquisition) with important increases in lateral resolution. This combination offers the means to address a common challenge in microscopy: the integration of properties and processes that depend on, and vary as a function of observational length.

Type
Techniques, Software, and Instrumentation Development
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie 9, 413468.CrossRefGoogle Scholar
Airy, G.B. (1835). On the diffraction of an object-glass with circular aperture. Trans Cambridge Philos Soc 5, 283291.Google Scholar
Ashok, A. & Neifeld, M.A. (2007). Pseudorandom phase masks for superresolution imaging from subpixel shifting. Appl Opt 46(12), 22562268.CrossRefGoogle ScholarPubMed
Bhushan, B., Wyant, J.C. & Koliopoulos, C.L. (1985). Measurement of surface topography of magnetic tapes by Mirau interferometry. Appl Opt 24(10), 14891497.CrossRefGoogle ScholarPubMed
Borman, S. & Stevenson, R. (1998). Spatial resolution enhancement of low-resolution image sequences. A comprehensive review with directions for future research. Technical report, University of Notre Dame, Indiana, USA, 64 pp. Google Scholar
Born, M. & Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 7th ed. Cambridge, UK: Cambridge University Press.Google Scholar
Caber, P.J. (1993). Interferometric profiler for rough surfaces. Appl Opt 32(19), 34383441.Google Scholar
de Groot, P. & Colonna de Lega, X. (2006). Interpreting interferometric height measurements using the instrument transfer function. In FRINGE 2005, The 5th International Workshop on Automatic Processing of Fringe Patterns, Osten, W. (Ed.), pp. 3037. Berlin: Springer.Google Scholar
Elad, M. & Feuer, A. (1999). Super-resolution reconstruction of image sequences. IEEE Trans Pattern Anal Mach Intell 21(9), 817834.CrossRefGoogle Scholar
Fillard, J.P. (1996). Near-field Optics and Nanoscopy. Singapore: World Scientific Publishing Company.CrossRefGoogle Scholar
Fischer, C., Arvidson, R.S. & Lüttge, A. (2012). How predictable are dissolution rates of crystalline material? Geochim Cosmochim Acta 98, 177185.CrossRefGoogle Scholar
Fischer, C. & Lüttge, A. (2007). Converged surface roughness parameters—A new tool to quantify rock surface morphology and reactivity alteration. Amer J Sci 307, 955973.CrossRefGoogle Scholar
Gao, F., Leach, R.K., Petzing, J. & Coupland, J.M. (2008). Surface measurement errors using commercial scanning white light interferometers. Meas Sci Technol 19, 015303/1–13. Google Scholar
Goodman, J.W. (1996). Introduction to Fourier Optics, 2nd ed. New York: The McGraw-Hill Companies Inc. Google Scholar
Harasaki, A., Schmit, J. & Wyant, A.C. (2000). Improved vertical-scanning interferometry. Appl Op 39(13), 21072115.Google Scholar
Harasaki, A. & Wyant, A.C. (2000). Fringe modulation skewing effect in white-light vertical scanning interferometry. Appl Opt 39(13), 21012106.CrossRefGoogle ScholarPubMed
Hell, S. (2007). Far-field optical nanoscopy. Science 316, 11531158.CrossRefGoogle ScholarPubMed
Juškaitis, R. & Wilson, T. (1998). The measurement of the amplitude point spread function of microscope objective lenses. J Microsc 189, 811.Google Scholar
Leach, R. & Haitjema, H. (2010). Bandwidth characteristics and comparisons of surface texture measuring instruments. Meas Sci Technol 21, 032001/1–9.CrossRefGoogle Scholar
Luttge, A. (2011). Experimental techniques for cement hydration studies. Studia UBB Geologia 56(2), 315.CrossRefGoogle Scholar
Niehues, J. & Lehmann, P. (2011). Improvement of lateral resolution and reduction of batwings in vertical scanning white-light interferometry. Proc SPIE 8082, 80820W180820W8.Google Scholar
Novotny, L. (2007). The history of near-field optics. In Progress in Optics, vol. 50, Wolf, E. (Ed.), pp. 137184. Amsterdam, The Netherlands: Elsevier.Google Scholar
Novotny, L. & Hecht, B. (2012). Principles of Nano-Optics, 2nd ed. New York: Cambridge University Press.Google Scholar
Park, S.C., Park, M.K. & Kang, M.G. (2003). Super-resolution image reconstruction: A technical overview. IEEE Signal Proc Mag 20(3), 2136.Google Scholar
Park, S.L., Gweon, D.G. & Moon, K.S. (1999). Improved phase unwrapping of phase shift interferometer using precision XY-scanner. In Optical Engineering for Sensing and Nanotechnology (ICOSN '99), 12 (May 7, 1999, Yokohama, Japan), Proc SPIE 3740, 0277-786X, 1215.Google Scholar
Park, S.L., Park, D.M., Ryu, J.W. & Gweon, D.G. (1998). Improved lateral resolution of interferometric microscope using precision scanner. J Korean Soc Precis Eng 15(6), 116123.Google Scholar
Pratt, W.K. (2001). Digital Image Processing: PIKS Inside, 3rd ed. New York: John Wiley & Sons Inc. Google Scholar
Rust, M.J., Bates, M. & Zhuanag, X. (2006). Sub-diffraction—Limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Met 3(10), 793795.CrossRefGoogle ScholarPubMed
Salari, E. & Bao, G. (2012). Super-resolution using an enhanced Papoulis–Gerchberg algorithm. IET Image Processing 6(7), 959965.Google Scholar
Sparrow, C.M. (1916). On spectroscopic resolving power. Astrophys J 44, 7686.Google Scholar
Strutt, J. (Lord Rayleigh) (1896). On the theory of optical images with special reference to the optical microscope. Phil Mag 5(42), 167195.Google Scholar
Wyant, J.C. (1985). Optical profilers for surface roughness. Proc Soc Photo-Optical Inst Eng 525, 174180.Google Scholar
Wyant, J.C. (2013). Computerized interferometric surface measurements. Appl Opt 52(1), 18.Google Scholar
Xie, W., Lehmann, P. & Niehues, J. (2012). Lateral resolution and transfer characteristics of vertical scanning white-light interferometers. Appl Opt 51(11), 17951803.CrossRefGoogle ScholarPubMed