Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-08T06:33:51.288Z Has data issue: false hasContentIssue false

Investigation of III–V Nanowires by Plan-View Transmission Electron Microscopy: InN Case Study

Published online by Cambridge University Press:  26 August 2014

Esperanza Luna*
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
Javier Grandal
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany ISOM and Departamento Ingeniería Electrónica, ETSI Telecomunicación, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
Eva Gallardo
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany Departamento de Física de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
José M. Calleja
Affiliation:
Departamento de Física de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
Miguel Á. Sánchez-García
Affiliation:
ISOM and Departamento Ingeniería Electrónica, ETSI Telecomunicación, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
Enrique Calleja
Affiliation:
ISOM and Departamento Ingeniería Electrónica, ETSI Telecomunicación, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
Achim Trampert
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
*
*Corresponding author.[email protected]
Get access

Abstract

We discuss observations of InN nanowires (NWs) by plan-view high-resolution transmission electron microscopy (TEM). The main difficulties arise from suitable methods available for plan-view specimen preparation. We explore different approaches and find that the best results are obtained using a refined preparation method based on the conventional procedure for plan-view TEM of thin films, specifically modified for the NW morphology. The fundamental aspects of such a preparation are the initial mechanical stabilization of the NWs and the minimization of the ion-milling process after dimpling the samples until perforation. The combined analysis by plan-view and cross-sectional TEM of the NWs allows determination of the degree of strain relaxation and reveals the formation of an unintentional shell layer (2–3-nm thick) around the InN NWs. The shell layer is composed of bcc In2O3 nanocrystals with a preferred orientation with respect to the wurtzite InN: In2O3 [111] || InN [0001] and In2O3 <110> || InN< $$ 11\bar 20 $$ >.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, H.B., Kim, Y.H., Kim, M.D., Kim, C.S. & Lee, J.Y. (2010). Formation and microstructural characterization of In2O3 sheath layer on InN nanostructures. Chem Phys Lett 499, 131135.CrossRefGoogle Scholar
Calleja, E., Grandal, J., Sánchez-García, M.A., Niebelschütz, M., Cimalla, V. & Ambacher, O. (2007). Evidence of electron accumulation at nonpolar surfaces of InN nanocolumns. Appl Phys Lett 90, 262110.CrossRefGoogle Scholar
Consonni, V., Hanke, M., Knelangen, M., Geelhaar, L., Trampert, A. & Riechert, H. (2011). Nucleation mechanisms of self-induced GaN nanowires grown on an amorphous interlayer. Phys Rev B 83, 035310.CrossRefGoogle Scholar
Dayeh, S.A., Tang, W., Boioli, F., Kavanagh, K.L., Zheng, H., Wang, J., Mack, N.H., Swadener, G., Huang, J.Y., Miglio, L., Tu, K.-N. & Picraux, S.T. (2013). Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett 13, 18691876.CrossRefGoogle ScholarPubMed
Dimakis, E., Jahn, U., Ramsteiner, M., Tahraoui, A., Grandal, J., Kong, X., Marquardt, O., Trampert, A., Riechert, H. & Geelhaar, L. (2014). Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates. Nano Lett 14, 26042609.CrossRefGoogle Scholar
González, D., Lozano, J.G., Herrera, M., Browning, N.D., Ruffenach, S., Briot, O. & García, R. (2009). Structural changes during the natural aging process of InN quantum dots. J Appl Phys 105, 013527.CrossRefGoogle Scholar
Grandal, J. & Sánchez-García, M.A. (2005). InN layers grown on silicon substrates: Effect of substrate temperature and buffer layers. J Crys Growth 278, 373377.CrossRefGoogle Scholar
Grandal, J., Sánchez-García, M.A., Calleja, E., Luna, E. & Trampert, A. (2007). Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by molecular beam epitaxy. Appl Phys Lett 91, 021902.CrossRefGoogle Scholar
Kehagias, Th., Delimitis, A., Komninou, Ph., Iliopoulos, E., Dimakis, E., Georgakilas, A. & Nouet, G. (2005). Misfit accommodation of compact and columnar InN epilayers grown on Ga-face GaN(0001) by molecular-beam epitaxy. Appl Phys Lett 86, 151905.CrossRefGoogle Scholar
King, P.D.C., Veal, T.D., Fuchs, F., Wang, Ch.Y., Payne, D.J., Bourlange, A., Zhang, H., Bell, G.R., Cimalla, V., Ambacher, O., Egdell, R.G., Bechsted, F. & McConville, C.F. (2009). Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Phys Rev B 79, 205211.CrossRefGoogle Scholar
King, P.D.C., Veal, T.D., Payne, D.J., Bourlange, A., Egdell, R.G. & McConville, C.F. (2008). Surface electron accumulation and the charge neutrality level in In2O3. Phys Rev Lett 101, 116808.CrossRefGoogle ScholarPubMed
Lazić, S., Gallardo, E., Calleja, J.M., Agulló-Rueda, F., Grandal, J., Sánchez-García, M.A., Calleja, E., Luna, E. & Trampert, A. (2007). Phonon-plasmon coupling in electron surface accumulation layers in InN nanocolumns. Phys Rev B 76, 205319.CrossRefGoogle Scholar
Lenrick, F., Ek, M., Jacobsson, D., Borgström, M.T. & Wallenberg, L.R. (2014). FIB plan and side view cross-sectional TEM. Microsc Microanal 20, 133140.CrossRefGoogle ScholarPubMed
Liliental-Weber, Z., Hawkridge, M., Mangum, J. & Kryliouk, O. (2008). InN nanorods and nanowires grown on different substrates. Phys Stat Sol (c) 5, 17951798.CrossRefGoogle Scholar
Lozano, J.G., Sánchez, A.M., García, R., González, D., Briot, O. & Ruffenach, S. (2006). Misfit relaxation of InN quantum dots: Effect of the GaN capping layer. Appl Phys Lett 88, 151913.CrossRefGoogle Scholar
Luna, E., Guzmán, A., Trampert, A. & Álvarez, G. (2012). Critical role of two-dimensional island-mediated growth on the formation of semiconductor heterointerfaces. Phys Rev Lett 109, 126101.CrossRefGoogle ScholarPubMed
Mahboob, I., Veal, T.D., McConville, C.F., Lu, H. & Schaff, W.J. (2004). Intrinsic electron accumulation at clean InN surfaces. Phys Rev Lett 92, 036804.CrossRefGoogle ScholarPubMed
Noguchi, M., Hirakawa, K. & Ikoma, T. (1991). Intrinsic electron accumulation layers on reconstructed clean InAs(100) surfaces. Phys Rev Lett 66, 22432246.CrossRefGoogle ScholarPubMed
Rudolph, D., Funk, S., Döblinger, M., Morkötter, S., Hertenberger, S., Schweickert, L., Becker, J., Matich, S., Bichler, M., Spirkoska, D., Zardo, I., Finley, J.J., Abstreiter, G. & Koblmüller, G. (2013). Spontaneous alloy composition ordering in GaAs-AlGaAs core-shell nanowires. Nano Lett 13, 15221527.CrossRefGoogle ScholarPubMed
Segura-Ruiz, J., Garro, N., Cantarero, A., Denker, C., Malindretos, J. & Rizzi, A. (2009). Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation. Phys Rev B 79, 115305.CrossRefGoogle Scholar
Segura-Ruiz, J., Molina-Sánchez, A., Garro, N., García-Cristóbal, A., Cantarero, A., Iikawa, F., Denker, C., Malindretos, J. & Rizzi, A. (2010). Inhomogeneous free-electron distribution in InN nanowires: Photoluminescence excitation experiments. Phys Rev B 82, 125319.CrossRefGoogle Scholar
Schreiber, D.K., Adusumilli, P., Hemesath, E.R., Seidman, D.N., Petford-Long, A.K. & Lauhon, L.J. (2012). A method for directly correlating site-specific cross-sectional and plan-view transmission electron microscopy of individual nanostructures. Microsc Microanal 18, 14101418.CrossRefGoogle ScholarPubMed
Suzuki, T. & Hirabayashi, Y. (1993). First observation of the Si(111)-7×7↔1×1 phase transition by the optical second harmonic generation. Jpn J Appl Phys 32, L610L613.Google Scholar
Tambe, M.J., Allard, L.F. & Gradečak, S. (2010). Characterization of core-shell GaAs/AlGaAs nanowire heterostructures using advanced electron microscopy. J Phys: Conf Ser 209, 012033.Google Scholar
Trampert, A., Ristic, J., Jahn, U., Calleja, E. & Ploog, K.H. (2004). TEM study of (Ga,Al)N nanocolumns and embedded GaN nanodics. Proc 13th Int Conf Microsc Semiconducting Mater 180, 167.Google Scholar
Wang, Q., Nguyen, H.P.T., Cui, K. & Mi, Z. (2012). High efficiency ultraviolet emission from AlxGa1-xN core-shell nanowire heterostructures grown on Si(111) by molecular beam epitaxy. Appl Phys Lett 101, 043115.CrossRefGoogle Scholar
Werner, F., Limbach, F., Carsten, M., Denker, C., Malindretos, J. & Rizzi, A. (2009). Electrical conductivity of InN nanowires and the influence of the native indium oxide formed at their surface. Nano Lett 9, 15671571.CrossRefGoogle ScholarPubMed
Zhao, S., Fathololoumi, S., Bevan, K.H., Liu, D.P., Kibria, M.G., Li, Q., Wang, G.T., Guo, H. & Mi, Z. (2012). Tuning the surface charge properties of epitaxial InN nanowires. Nano Lett 12, 28772882.CrossRefGoogle ScholarPubMed
Zhao, S., Salehzadeh, O., Alagha, S., Kavanagh, K.L., Watkins, S.P. & Mi, Z. (2013). Probing the electrical transport properties of intrinsic InN nanowires. Appl Phys Lett 102, 073102.CrossRefGoogle Scholar
Zheng, C., Wong-Leung, J., Gao, Q., Tan, H.H., Jagadish, C. & Etheridge, J. (2013). Polarity-driven 3-fold symmetry of GaAs/AlGaAs core multishell nanowires. Nano Lett 13, 37423748.CrossRefGoogle ScholarPubMed