Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T07:53:12.780Z Has data issue: false hasContentIssue false

Investigation of Hemicellulose Alteration in Fabaceae Root Cell Walls During Flooding-Induced Aerenchyma Formation

Published online by Cambridge University Press:  30 July 2020

Timothy Pegg
Affiliation:
Miami University, Oxford, Ohio, United States
Daniel Gladish
Affiliation:
Miami University, Oxford, Ohio, United States
Richard Edelmann
Affiliation:
Miami University, Oxford, Ohio, United States
Robert Baker
Affiliation:
Miami University, Oxford, Ohio, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advances in Imaging Approaches for Plant Biology
Copyright
Copyright © Microscopy Society of America 2020

References

Barnes, W. J. & Anderson, C. T. (2018). Release, Recycle, Rebuild: Cell-Wall Remodeling, Autodegradation, and Sugar Salvage for New Wall Biosynthesis during Plant Development. Molecular Plant 11, 3146. http://www.sciencedirect.com/science/article/pii/S1674205217302411.10.1016/j.molp.2017.08.011CrossRefGoogle ScholarPubMed
Gunawardena, A. H. L. A. N., Pearce, D. M. E., Jackson, M. B., Hawes, C. R. & Evans, D. E. (2001). Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localized form of programmed cell death in roots of maize (Zea mays L.) promoted by ethylene. Plant, Cell & Environment 24, 13691375. https://doi.org/10.1046/j.1365-3040.2001.00774.x.CrossRefGoogle Scholar
Ni, X.-L., Gui, M.-Y., Tan, L.-L., Zhu, Q., Liu, W.-Z. & Li, C.-X. (2019). Programmed Cell Death and Aerenchyma Formation in Water-Logged Sunflower Stems and Its Promotion by Ethylene and ROS. Frontiers in Plant Science 9, 1928. https://www.frontiersin.org/article/10.3389/fpls.2018.01928.10.3389/fpls.2018.01928CrossRefGoogle ScholarPubMed
Pegg, T. J., Edelmann, R. E. & Gladish, D. K. (2018). Progression of Cell Wall Matrix Alterations during Aerenchyma Formation in Pisum sativum Root Cortical Cells.10.1017/S1431927618007377CrossRefGoogle Scholar
Pérez-Pérez, Y., Carneros, E., Berenguer, E., Solís, M.-T., Bárány, I., Pintos, B., Gómez-Garay, A., Risueño, M. C. & Testillano, P. S. (2019). Pectin De-methylesterification and AGP Increase Promote Cell Wall Remodeling and Are Required During Somatic Embryogenesis of Quercus suber. Frontiers in plant science 9, 1915. https://www.ncbi.nlm.nih.gov/pubmed/30671070.10.3389/fpls.2018.01915CrossRefGoogle ScholarPubMed
Rost, T. L., Lu, P. & Gladish, D. (1991). The Occurrence of Vascular Cavities and Specialized Parenchyma Cells in the Roots of Cool-season Legumes. Botanica Acta 104, 300305. https://doi.org/10.1111/j.1438-8677.1991.tb00234.x.CrossRefGoogle Scholar
Wu, H.-C., Bulgakov, V. P. & Jinn, T.-L. (2018). Pectin Methylesterases: Cell Wall Remodeling Proteins Are Required for Plant Response to Heat Stress. Frontiers in Plant Science 9, 1612. https://www.frontiersin.org/article/10.3389/fpls.2018.01612.10.3389/fpls.2018.01612CrossRefGoogle ScholarPubMed