Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T05:17:57.719Z Has data issue: false hasContentIssue false

Intrinsically Fluorescent Silica Nanocontainers: A Promising Theranostic Platform

Published online by Cambridge University Press:  26 June 2013

Ana S. Rodrigues
Affiliation:
Centro de Química-Física Molecular (CQFM) and Institute of Nanoscience and Nanotechnology (IN), Instituto Superior Técnico, 1049-001 Lisboa, Portugal
Tânia Ribeiro
Affiliation:
Centro de Química-Física Molecular (CQFM) and Institute of Nanoscience and Nanotechnology (IN), Instituto Superior Técnico, 1049-001 Lisboa, Portugal
Fábio Fernandes
Affiliation:
Centro de Química-Física Molecular (CQFM) and Institute of Nanoscience and Nanotechnology (IN), Instituto Superior Técnico, 1049-001 Lisboa, Portugal
José Paulo S. Farinha*
Affiliation:
Centro de Química-Física Molecular (CQFM) and Institute of Nanoscience and Nanotechnology (IN), Instituto Superior Técnico, 1049-001 Lisboa, Portugal
Carlos Baleizão*
Affiliation:
Centro de Química-Física Molecular (CQFM) and Institute of Nanoscience and Nanotechnology (IN), Instituto Superior Técnico, 1049-001 Lisboa, Portugal
*
*Corresponding author. E-mail: [email protected]
**Corresponding author. E-mail: [email protected]
Get access

Abstract

In this paper we describe the preparation of fluorescent mesoporous silica nanoparticles (MSNs) for traceable drug delivery systems. The nanoparticles were prepared following a sol–gel procedure, incorporating a modified perylenediimide dye in the silica structure. Transmission electron microscopy and scanning electron microscopy show that the nanoparticles are monodispersed, with a spheroid shape and a raspberry-type surface morphology. The hybrid MSNs are robust, maintaining the mesoporous structure after template removal, with a pore diameter above 2 nm. A polymer shell was synthesized from the external surface of the hybrid nanoparticles by atom transfer radical polymerization, showing temperature-switchable collapsed/expanded conformation control. The fluorescent properties of the perylenediimide dye incorporated in the MSN pore walls are intact, and internalization in HEK293 cells shows that the nanoparticles are efficiently dispersed in the cytosol. These results show that the mesoporous fluorescent hybrid nanoparticles are an excellent platform for development of a traceable drug delivery system.

Type
Portuguese Society for Microscopy
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braunecker, W.A. & Matyjaszewski, K. (2007). Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci 32, 93146.CrossRefGoogle Scholar
Cohen Stuart, M.A., Huck, W.T.S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. & Minko, S. (2010). Emerging applications of stimuli-responsive polymer materials. Nat Mater 9, 101113.CrossRefGoogle Scholar
Hoffmann, F., Cornelius, M., Morell, J. & Froba, M. (2006). Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45, 32163251.CrossRefGoogle ScholarPubMed
Huang, C., Barlow, S. & Marder, S.R. (2011). Perylene-3,4,9,10-tetracarboxylic acid diimides: Synthesis, physical properties, and use in organic electronics. J Org Chem 76, 23862407.CrossRefGoogle ScholarPubMed
Kelkar, S.S. & Reineke, T.M. (2011). Theranostics: Combining imaging and therapy. Bioconjugate Chem 22, 18791903.CrossRefGoogle ScholarPubMed
Lee, J.E., Lee, N., Kim, T., Kim, J. & Hyeon, T. (2011). Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44, 893902.CrossRefGoogle ScholarPubMed
Li, C. & Benicewicz, B.C. (2005). Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 38, 59295936.CrossRefGoogle Scholar
Lin, Y.S., Tsai, C.-P., Huang, H.-Y., Kuo, C.-T., Hung, T., Huang, D.M., Chen, Y.-C. & Mou, C.-Y. (2005). Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17, 45704573.CrossRefGoogle Scholar
Luo, Y. & Lin, J.J. (2006). Solvent induced different morphologies of bis(propyl)triethoxysilane substituted perylenediimide and their optical properties. Colloid Interface Sci 297, 625630.CrossRefGoogle ScholarPubMed
Lutz, J.-F. (2011). Thermo-switchable materials prepared using the OEGMA-platform. Adv Mater 23, 22372243.CrossRefGoogle Scholar
Lutz, J.-F. & Hoth, A. (2006). Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethylmethacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39, 893896.CrossRefGoogle Scholar
Matyjaszewski, K. & Tsarevsky, N.V. (2009). Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1, 276288.CrossRefGoogle ScholarPubMed
Roy, D., Cambre, J.N. & Sumerlin, B.S. (2010). Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35, 278301.CrossRefGoogle Scholar
Siegwart, D.J., Oh, J.K. & Matyjaszewski, K. (2012). ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 37, 1837.CrossRefGoogle ScholarPubMed
Slowing, I.I., Lin, V.S.Y., Wu, C.W. & Vivero-Escoto, J.L. (2009). Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 5, 5762.CrossRefGoogle ScholarPubMed
Slowing, I.I., Vivero-Escoto, J.L., Trewyn, B.G. & Lin, V.S.Y. (2010). Mesoporous silica nanoparticles: Structural design and applications. J Mater Chem 20, 79247937.CrossRefGoogle Scholar
Soler-Illia, G.J.A.A. & Azzaroni, O. (2011). Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem Soc Rev 40, 11071150.CrossRefGoogle ScholarPubMed
Stutz, C., Bilecka, I., Thunemann, A.F., Niederbergerb, M. & Borner, H.G. (2012). Superparamagnetic core–shell nanoparticles as solid supports for peptide synthesis. Chem Commun 48, 71767178.CrossRefGoogle ScholarPubMed
Tang, F., Li, L. & Chen, D. (2012). Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv Mater 24, 15041534.CrossRefGoogle ScholarPubMed
Weil, T., Vosch, T., Hofkens, J., Peneva, K. & Müllen, K. (2010). The rylene colorant family-tailored nanoemitters for photonics research and applications. Angew Chem Int Ed 49, 90689093.CrossRefGoogle ScholarPubMed
Zhan, X., Facchetti, A., Barlow, S., Marks, T.J., Ratner, M.A., Wasielewski, M.R. & Marder, S.R. (2011). Rylene and related diimides for organic electronics. Adv Mater 23, 268284.CrossRefGoogle ScholarPubMed