Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T18:27:27.487Z Has data issue: false hasContentIssue false

Intergrowth of Components and Ramps in Coffin-Shaped ZSM-5 Zeolite Crystals Unraveled by Focused Ion Beam-Assisted Transmission Electron Microscopy

Published online by Cambridge University Press:  05 November 2013

Jiangbo Lu
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Maarten B.J. Roeffaers
Affiliation:
COK, KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee, Belgium
Evelyne Bartholomeeusen
Affiliation:
COK, KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee, Belgium
Bert F. Sels
Affiliation:
COK, KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee, Belgium
Dominique Schryvers*
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Scanning electron microscopy, focused ion beam (FIB), and transmission electron microscopy are combined to study the intergrowth of 90° rotational components and of ramps in coffin-shaped ZSM-5 crystals. The 90° rotational boundaries with local zig-zag features between different intergrowth components are observed in the main part of crystal. Also a new kind of displacement boundary is described. At the displacement boundary there is a shift of the unit cells along the boundary without a change in orientation. Based on lamellae prepared with FIB from different positions of the ramps and crystal, the orientation relationships between ramps and the main part of the crystal are studied and the three-dimensional morphology and growth mechanism of the ramp are illustrated.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agger, J.R., Hanif, N., Cundy, C.S., Wade, A.P., Dennison, S., Rawlinson, P.A. & Anderson, M.W. (2002). Silicalite crystal growth investigated by atomic force microscopy. J Am Chem Soc 125(3), 830839.CrossRefGoogle Scholar
Aramburo, L.R., Karwacki, L., Cubillas, P., Asahina, S., de Winter, D.A.M., Drury, M.R., Buurmans, I.L.C., Stavitski, E., Mores, D., Daturi, M., Bazin, P., Dumas, P., Thibault-Starzyk, F., Post, J.A., Anderson, M.W., Terasaki, O. & Weckhuysen, B.M. (2011). The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: The influence of the zeolite architecture. Chem Eur J 17(49), 1377313781.CrossRefGoogle ScholarPubMed
De Cremer, G., Sels, B.F., De Vos, D.E., Hofkens, J. & Roeffaers, M.B.J. (2010). Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. Chem Soc Rev 39(12), 47034717.CrossRefGoogle ScholarPubMed
Den Hollander, M.A., Wissink, M., Makkee, M. & Moulijn, J.A. (2002). Gasoline conversion: Reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts. Appl Catal A 223(1-2), 85102.CrossRefGoogle Scholar
Gonthier, S. & Thompson, R.W. (1994). Effects of seeding on zeolite crystallisation, and the growth behavior of seeds. In Studies in Surface Science and Catalysis, Jansen, J.C., Stöker, M., Karge, H.G. & Weitkamp, J. (Eds.), pp. 4373. Amsterdam: Elsevier.Google Scholar
Hay, D.G., Jaeger, H. & Wilshier, K.G. (1990). Systematic intergrowth in crystals of ZSM-5 zeolite. Zeolites 10(6), 571576.CrossRefGoogle Scholar
Iwasaki, A., Hirata, M., Kudo, I. & Sano, T. (1996). Behavior of the (010) face of silicalite crystal. Zeolites 16(1), 3541.CrossRefGoogle Scholar
Iwasaki, A., Hirata, M., Kudo, I., Sano, T., Sugawara, S., Ito, M. & Watanabe, M. (1995). In situ measurement of crystal growth rate of zeolite. Zeolites 15(4), 308314.CrossRefGoogle Scholar
Iwasaki, A., Sano, T. & Kiyozumi, Y. (1998). Effect of additives on the growth behavior of silicalite crystal. Micropor Mesopor Mat 25(1-3), 119126.CrossRefGoogle Scholar
Karwacki, L., de Winter, D.A.M., Aramburo, L.R., Lebbink, M.N., Post, J.A., Drury, M.R. & Weckhuysen, B.M. (2011). Architecture-dependent distribution of mesopores in steamed zeolite crystals as visualized by FIB-SEM tomography. Angew Chem Int Ed 50(6), 12941298.CrossRefGoogle ScholarPubMed
Karwacki, L., Kox, M.H.F., Matthijs de Winter, D.A., Drury, M.R., Meeldijk, J.D., Stavitski, E., Schmidt, W., Mertens, M., Cubillas, P., John, N., Chan, A., Kahn, N., Bare, S.R., Anderson, M., Kornatowski, J. & Weckhuysen, B.M. (2009). Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nat Mater 8(12), 959965.CrossRefGoogle ScholarPubMed
Karwacki, L., Stavitski, E., Kox, M.H., Kornatowski, J. & Weckhuysen, B.M. (2007). Intergrowth structure of zeolite crystals as determined by optical and fluorescence microscopy of the template-removal process. Angew Chem Int Ed 46(38), 72287231.CrossRefGoogle ScholarPubMed
Karwacki, L. & Weckhuysen, B.M. (2011). New insight in the template decomposition process of large zeolite ZSM-5 crystals: An in situ UV-Vis/fluorescence micro-spectroscopy study. Phys Chem Chem Phys 13(9), 36813685.CrossRefGoogle Scholar
Klapper, H. (2010). Generation and propagation of defects during crystal growth. In Springer Handbook of Crystal Growth, Dhanaraj, G., Byrappa, K., Prasad, V. & Dudley, M. (Eds.), pp. 93132. Heidelberg, Berlin: Springer.CrossRefGoogle Scholar
Kox, M.H.F., Stavitski, E. & Weckhuysen, B.M. (2007). Nonuniform catalytic behavior of zeolite crystals as revealed by in situ optical microspectroscopy. Angew Chem Int Ed 46(20), 36523655.CrossRefGoogle ScholarPubMed
Millward, G.R., Ramdas, S., Thomas, J.M. & Barlow, M.T. (1983). Evidence for semi-regularly ordered sequences of mirror and inversion symmetry planes in ZSM-5/ZSM-11 shape-selective zeolitic catalysts. J Chem Soc, Faraday Trans 2 79(7), 10751082.CrossRefGoogle Scholar
Mueller, U. & Unger, K.K. (1988). Preliminary studies on the synthesis of alkaline-free large crystals of ZSM-5. Zeolites 8(2), 154156.CrossRefGoogle Scholar
Price, G.D., Pluth, J.J., Smith, J.V., Bennett, J.M. & Patton, R.L. (1982). Crystal structure of tetrapropylammonium fluoride-containing precursor to fluoride silicalite. J Am Chem Soc 104(22), 59715977.CrossRefGoogle Scholar
Roeffaers, M.B., Sels, B.F., Uji-I, H., Blanpain, B., L'Hoest, P., Jacobs, P.A., De Schryver, F.C., Hofkens, J. & De Vos, D.E. (2007). Space- and time-resolved visualization of acid catalysis in ZSM-5 crystals by fluorescence microscopy. Angew Chem Int Ed 46(10), 17061709.CrossRefGoogle ScholarPubMed
Roeffaers, M.B.J., Ameloot, R., Baruah, M., Uji-I, H., Bulut, M., De Cremer, G., Müller, U., Jacobs, P.A., Hofkens, J., Sels, B.F. & De Vos, D.E. (2008a). Morphology of large ZSM-5 crystals unraveled by fluorescence microscopy. J Am Chem Soc 130(17), 57635772.CrossRefGoogle ScholarPubMed
Roeffaers, M.B.J., Ameloot, R., Bons, A.-J., Mortier, W., De Cremer, G., de Kloe, R., Hofkens, J., De Vos, D.E. & Sels, B.F. (2008b). Relating pore structure to activity at the subcrystal level for ZSM-5: An electron backscattering diffraction and fluorescence microscopy study. J Am Chem Soc 130(41), 1351613517.CrossRefGoogle ScholarPubMed
Roeffaers, M.B.J., de Cremer, G., Libeert, J., Ameloot, R., Dedecker, P., Bons, A.-J., Bückins, M., Martens, J.A., Sels, B.F., de Vos, D.E. & Hofkens, J. (2009). Super-resolution reactivity mapping of nanostructured catalyst particles. Angew Chem Int Ed 48(49), 92859289.CrossRefGoogle ScholarPubMed
Stavitski, E., Drury, M.R., de Winter, D.A.M., Kox, M.H.F. & Weckhuysen, B.M. (2008). Intergrowth structure of zeolite crystals and pore orientation of individual subunits revealed by electron backscatter diffraction/focused ion beam experiments. Angew Chem Int Ed 47(30), 56375640.CrossRefGoogle ScholarPubMed
Stavitski, E., Kox, M.H.F. & Weckhuysen, B.M. (2007). Revealing shape selectivity and catalytic activity trends within the pores of H-ZSM-5 crystals by time- and space-resolved optical and fluorescence microspectroscopy. Chem Eur J 13(25), 70577065.CrossRefGoogle ScholarPubMed
Taylor, J.C., Miller, S.A. & Bibby, D.M. (1986). A study of decomposition methods for refinement of H+-ZSM5 zeolite with powder diffraction data. Z Kristallogr 176(3-4), 183192.CrossRefGoogle Scholar
Tzoulaki, D., Heinke, L., Schmidt, W., Wilczok, U. & Karger, J. (2008). Exploring crystal morphology of nanoporous hosts from time-dependent guest profiles. Angew Chem Int Ed 47(21), 39543957.CrossRefGoogle ScholarPubMed
Van der Veen, M.A., Sels, B.F., De Vos, D.E. & Verbiest, T. (2010). Localization of p-nitroaniline chains inside zeolite ZSM-5 with second-harmonic generation microscopy. J Am Chem Soc 132(19), 66306631.CrossRefGoogle ScholarPubMed
Weckhuysen, B.M. (2009). Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew Chem Int Ed 48(27), 49104943.CrossRefGoogle ScholarPubMed
Weidenthaler, C., Fischer, R.X., Shannon, R.D. & Medenbach, O. (1994). Optical investigations of intergrowth effects in the zeolite catalysts ZSM-5 and ZSM-8. J Phys Chem 98(48), 1268712694.CrossRefGoogle Scholar
Wu, E.L., Lawton, S.L., Olson, D.H., Rohrman, A.C. & Kokotailo, G.T. (1979). ZSM-5-type materials. Factors affecting crystal symmetry. J Phys Chem 83(21), 27772781.CrossRefGoogle Scholar
Wu, X. & Anthony, R.G. (1999). Alkylation of benzene with formaldehyde over ZSM-5. J Catal 184(1), 294297.CrossRefGoogle Scholar
Supplementary material: PDF

Lu et al. Supplementary Material

Figure

Download Lu et al. Supplementary Material(PDF)
PDF 58.7 KB