Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T01:28:39.832Z Has data issue: false hasContentIssue false

Interfacial Energy-Dispersive Spectroscopy Profile X-Ray Resolution Measurements in Variable Pressure SEM

Published online by Cambridge University Press:  24 June 2014

Abdelhalim Zoukel
Affiliation:
Univ-Lille Nord de France, Ecole des Mines de Douai, 941 rue Charles Bourseul, BP 10838, 59500 Douai, France Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 5 rue Bommel, L-4940 Hautcharage, Luxembourg
Lahcen Khouchaf*
Affiliation:
Univ-Lille Nord de France, Ecole des Mines de Douai, 941 rue Charles Bourseul, BP 10838, 59500 Douai, France
Jean Di Martino
Affiliation:
Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 5 rue Bommel, L-4940 Hautcharage, Luxembourg
David Ruch
Affiliation:
Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 5 rue Bommel, L-4940 Hautcharage, Luxembourg
*
*Corresponding author. [email protected]
Get access

Abstract

A procedure has been developed to follow degradation of energy-dispersive spectroscopy (EDS) X-ray lateral resolution in a variable pressure scanning electron microscope. This procedure is based on evaluation of the EDS profile shape change for different experimental conditions. Some parameters affecting the X-ray resolution in high-vacuum mode have been taken into account. Good agreement between the simulated and experimental EDS profiles shows the reliability of the proposed procedure. A significant improvement in measurement of the EDS profile interfacial distance (DINT) has been achieved.

Type
Instrumentation and Techniques Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnoult, C., Di Martino, J., Khouchaf, L., Toniazzo, V. & Ruch, D. (2011). Pressure and scattering regime influence on the EDS profile resolution at a composite interface in environmental SEM. Micron 42(8), 877883.CrossRefGoogle Scholar
Barkshire, I., Karduck, P., Rehbach, W.P. & Richter, S. (2000). High-spatial-resolution low-energy electron beam X-ray microanalysis. Mikrochimica Acta 132(2–4), 113128.CrossRefGoogle Scholar
Berre, J.-F.L., Robertson, K., Gauvin, R. & Demopoulos, G. (2006). Performance of X-ray microanalysis in the variable pressure or environmental scanning electron microscope. Microsc Microanal 12(Suppl S02), 14921493.CrossRefGoogle Scholar
Bilde-Sørensen, J. & Appel, C.C. (1997). X-ray spectrometry in ESEM and LVSEM: Corrections for beam skirt effects. In Proceedings. Forty-Ninth Annual Meeting. The Scandinavian Society for Electron Microscopy, Thölén A.R. (Ed.), pp. 1215. Göteborg: SCANDEM.Google Scholar
Carlton, R.A. (1996). An examination of the effects of electron beam broadening on particle X-ray microanalysis in the environmental scanning electron microscope. Scanning 18(3), 166.Google Scholar
Casnati, E., Tartari, A. & Baraldi, C. (1982). An empirical approach to K-shell ionisation cross section by electrons. J Phys B At Mol Phys 15(1), 155.CrossRefGoogle Scholar
Castaing, R. (1960). Electron Probe Microanalysis. Advance in Electronics and Electron Physics, Vol. XIII, pp. 317--386, Academic Press, New York, NY.CrossRefGoogle Scholar
Danilatos, G.D. (1988). Foundations of Environmental Scanning Electron Microscopy. New York, NY, ETATS-UNIS: Academic Press.CrossRefGoogle Scholar
Danilatos, G.D. (1990). Equations of charge distribution in the environmental scanning electron microscope (ESEM). Scanning Microsc 4(4), 799823.Google Scholar
Danilatos, G.D. (1991). Review and outline of environmental SEM at present. J Microsc 162(3), 391402.CrossRefGoogle Scholar
Danilatos, G.D. (1994). Environmental scanning electron microscopy and microanalysis. Microchimica Acta 114–115(1), 143155.CrossRefGoogle Scholar
Doehne, E. (1997). A new correction method for high-resolution energy-dispersive X-ray analyses in the environmental scanning electron microscope. Scanning 19(2), 7578.CrossRefGoogle Scholar
Durkin, R. & Shah, J.S. (1993). Amplification and noise in high-pressure scanning electron microscopy. J Microsc 169(1), 3351.CrossRefGoogle Scholar
Faulkner, R.G., Little, E.A. & Adetunji, G.J. (1990). Comparative STEM and FEGSTEM analysis of grain boundaries in steels. Mater Charact 25(1), 8397.CrossRefGoogle Scholar
Gauvin, R. (1999). Some theoretical considerations on X-ray microanalysis in the environmental or variable pressure scanning electron microscope. Scanning 21(6), 388393.CrossRefGoogle Scholar
Gilpin, C. & Sigee, D.C. (1995). X-ray microanalysis of wet biological specimens in the environmental scanning electron microscope. 1. Reduction of specimen distance under different atmospheric conditions. J Microsc 179(1), 2228.CrossRefGoogle Scholar
Goldstein, J. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. : Kluwer Academic Publishers.CrossRefGoogle Scholar
Hovington, P., Drouin, D. & Gauvin, R. (1997). CASINO: A new monte carlo code in C language for electron beam interaction—part I: Description of the program. Scanning 19(1), 114.CrossRefGoogle Scholar
Joy, D.C. & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning 11(4), 176180.CrossRefGoogle Scholar
Khouchaf, L. (2012). Gaseous Scanning Electron Microscope (GSEM): Applications and Improvement, Scanning Electron Microscopy. Croatia: InTech. Available at: http://www.intechopen.com/books/scanning-electron-microscopy/variable-pressure-and-environmental-sem-vp-sem-applications-and-improvement-Google Scholar
Khouchaf, L. & Boinski, F. (2007). Environmental scanning electron microscope study of SiO2 heterogeneous material with helium and water vapor. Vacuum 81(5), 599603.CrossRefGoogle Scholar
Khouchaf, L., Mathieu, C. & Kadoun, A.-E.-D. (2011). Microanalysis results with low Z gas inside environmental SEM. Vacuum 86(1), 6265.CrossRefGoogle Scholar
Khouchaf, L. & Verstraete, J. (2002). X-ray microanalysis in the environmental scanning electron microscope (ESEM): Small size particles analysis limits. Journal De Physique. IV: JP 12, 341346.Google Scholar
Khouchaf, L. & Verstraete, J. (2004). Electron scattering by gas in the environmental scanning electron microscope (ESEM): Effects on the image quality and on the X-ray microanalysis. Journal De Physique. IV: JP 118, 237243.Google Scholar
Kirschner, J. (1977). On the influence of backscattered electrons on the lateral resolution in scanning auger microscopy. Appl Phys 14(4), 351354.CrossRefGoogle Scholar
Mansfield, J.F. (2000). X-ray microanalysis in the environmental SEM: A challenge or a contradiction? Microchimica Acta 132(2), 137143.CrossRefGoogle Scholar
Mathieu, C. (1998). Effects of electron-beam/gas interactions on X-ray microanalysis in the variable pressure SEM. Mikrochimica Acta 15(Suppl), 295300.Google Scholar
Michael, J.R. & Williams, D.B. (1987). A consistent definition of probe size and spatial resolution in the analytical electron microscope. J Microsc 147(3), 289303.CrossRefGoogle Scholar
Moncrieff, D.A., Robinson, V.N.E. & Harris, L.B. (1978). Charge neutralisation of insulating surfaces in the SEM by gas ionisation. J Phys D Appl Phys 11(17), 23152325.CrossRefGoogle Scholar
Newbury, D.E. (2002). X-ray microanalysis in the variable pressure (environmental) scanning electron microscope. J Res Natl Inst Stand Technol 107(6), 567603.CrossRefGoogle ScholarPubMed
Reed, S.J.B. (1997). Electron Microprobe Analysis, 2nd ed.: Cambridge University Press.Google Scholar
Reimer, L., Gilde, H. & Sommer, K.H. (1970). The broadening of an electron beam (17–1200 KeV) by multiple scattering (Die Verbreiterung Eines Elektronenstrahles) 17–1200 KeV. Durch Mehrfachstreuung 30(6), 590605.Google Scholar
Stokes, D. (2008). Principles and Practice of Variable Pressure: Environmental Scanning Electron Microscopy (VP-ESEM). : Wiley.Google Scholar
Stowe, S.J. & Robinson, V.N.E. (1998). The use of helium gas to reduce beam scattering in high vapour pressure scanning electron microscopy applications. Scanning 20(1), 5760.CrossRefGoogle Scholar
Tang, X. & Joy, D.C. (2005). An experimental model of beam broadening in the variable pressure scanning electron microscope. Scanning 27(6), 293297.CrossRefGoogle ScholarPubMed
Thiel, B.L., Bache, I.C., Fletcher, A.L., Meredith, P. & Donald, A.M. (1997). An improved model for gaseous amplification in the environmental SEM. J Microsc 187(3), 143157.CrossRefGoogle Scholar
Wight, S.A. (2001). Experimental data and model simulations of beam spread in the environmental scanning electron microscope. Scanning 23(5), 320327.CrossRefGoogle ScholarPubMed
Willich, P. & Bethke, R. (1996). Practical aspects and applications of EPMA at low electron energies. In Microbeam and Nanobeam Analysis, Benoit D., Bresse J.-F., Van’t dack L., Werner H. & Wernisch J. (Eds.), pp. 631638. Vienna: Springer.CrossRefGoogle Scholar
Zoukel, A., Khouchaf, L., Arnoult, C., Di Martino, J. & Ruch, D. (2013 a). A new approach to reach the best resolution of X-ray microanalysis in the variable pressure SEM. Micron 46, 1221.CrossRefGoogle ScholarPubMed
Zoukel, A., Khouchaf, L., Arnoult, C., Di Martino, J. & Ruch, D. (2013 b). Skirting effects in the variable pressure scanning electron microscope: Limitations and improvements. Micron 44, 107114.CrossRefGoogle ScholarPubMed