No CrossRef data available.
Article contents
Inner Shell Edge Jump Ratios in Electron Energy Loss Spectrometry
Published online by Cambridge University Press: 02 July 2020
Abstract
There has been considerable interest in recent years in simulating the complete electron energy loss (EELS) spectrum to help the analyst make suitable judgments on experimental parameters such as collection angles and acquisition times. The spectrum is characterised by edges that arise from the excitation of inner shell electrons to the first available empty state. The edge threshold is approximately given by the inner shell binding energy. Each edge sits on the background of the tails of all the edges from inner shell excitations of lower energy (see Figl). The background from plasmons decays very quickly with energy and even the broadest plasmon makes a negligible contribution to the intensity for losses above about 150eV. The visibility of an edge (and also the detectability of the corresponding element) can be related to the intensity of the edge compared to the background although it is more common to use the jump ratio, which is the ratio of the intensity in the region after the edge E+B to the intensity of the background in the edge region, B.
- Type
- EELS Microanalysis at High Sensitivity: Advances in Spectrum Imaging, Energy Filtering and Detection (Organized by R. Leapman and J. Bruley)
- Information
- Copyright
- Copyright © Microscopy Society of America 2001