Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T20:24:22.389Z Has data issue: false hasContentIssue false

The Influence of the Sample Thickness on the Lateral and Axial Resolution of Aberration-Corrected Scanning Transmission Electron Microscopy

Published online by Cambridge University Press:  07 January 2013

Ranjan Ramachandra
Affiliation:
Vanderbilt UniversitySchool of Medicine, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615, USA
Hendrix Demers
Affiliation:
University of Sherbrooke, Electrical and Computer Engineering Department, Sherbrooke, Quebec J1K 2R1, Canada
Niels de Jonge*
Affiliation:
Vanderbilt UniversitySchool of Medicine, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615, USA INM—Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The lateral and axial resolution of three-dimensional (3D) focal series aberration-corrected scanning transmission electron microscopy was studied for samples of different thicknesses. The samples consisted of gold nanoparticles placed on the top and at the bottom of silicon nitride membranes of thickness between 50 and 500 nm. Atomic resolution was obtained for nanoparticles on top of 50-, 100-, and 200-nm-thick membranes with respect to the electron beam traveling downward. Atomic resolution was also achieved for nanoparticles placed below 50-, 100-, and 200-nm-thick membranes but with a lower contrast at the larger thicknesses. Beam broadening led to a reduced resolution for a 500-nm-thick membrane. The influence of the beam broadening on the axial resolution was also studied using Monte Carlo simulations with a 3D sample geometry.

Type
Software, Techniques and Equipment Development
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current affiliation: Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA, USA

Current affiliation: Department of Materials Engineering, McGill University, Montréal, Québec, Canada

References

Aoyama, K., Takagi, T., Hirase, A. & Miyazawa, A. (2008). STEM tomography for thick biological specimens. Ultramicroscopy 109, 7080.CrossRefGoogle ScholarPubMed
Behan, G., Cosgriff, E.C., Kirkland, A.I. & Nellist, P.D. (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos T Roy Soc A 367, 38253844.CrossRefGoogle ScholarPubMed
Blom, D.A., Allard, L.E., Mishina, S. & O'Keefe, M.A. (2006). Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory. Microsc Microanal 12, 483491.Google Scholar
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci 103, 30443048.Google Scholar
Born, M. & Wolf, E. (1997). Principles of Optics. Cambridge, UK: Cambridge University Press.Google Scholar
D'Alfonso, A.J., Cosgriff, E.C., Findlay, S.D., Behan, G., Kirkland, A.I., Nellist, P.D. & Allen, L.J. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part II: Inelastic scattering. Ultramicroscopy 108, 15671578.Google Scholar
de Jonge, N., Bigelow, W.C. & Veith, G.M. (2010a). Atmospheric pressure scanning transmission electron microscopy. Nano Lett 10, 10281031.Google Scholar
de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D.B. & Drouin, D. (2010b). Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110, 11141119.Google Scholar
de Jonge, N., Sougrat, R., Northan, B.M. & Pennycook, S.J. (2010c). Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc Microanal 16, 5463.Google Scholar
de Jonge, N., Sougrat, R., Peckys, D.B., Lupini, A.R. & Pennycook, S.J. (2007). 3-dimensional aberration corrected scanning transmission electron microscopy for biology. In Nanotechnology in Biology and Medicine-Methods, Devices and Applications, Vo-Dinh, T. (Ed.), pp. 13.1113.27. Boca Raton, FL: CRC Press.Google Scholar
Demers, H., Poirier-Demers, N., Couture, A.R., Joly, D., Guilmain, M., de Jonge, N. & Drouin, D. (2011). Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning 33, 135146.CrossRefGoogle ScholarPubMed
Demers, H., Poirier-Demers, N., Drouin, D. & de Jonge, N. (2010). Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc Microanal 16, 795804.CrossRefGoogle ScholarPubMed
Demers, H., Ramachandra, R., Drouin, D. & de Jonge, N. (2012). The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens. Microsc Microanal 18, 582590.Google Scholar
Dukes, M.J., Ramachandra, R., Baudoin, J.P., Jerome, W.G. & de Jonge, N. (2011). Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3 nm precision using aberration-corrected scanning transmission electron microscopy. J Struct Biol 174, 552562.Google Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.Google Scholar
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.Google Scholar
Hohmann-Marriott, M.F., Sousa, A.A., Azari, A.A., Glushakova, S., Zhang, G., Zimmerberg, J. & Leapman, R.D. (2009). Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Methods 6, 729731.Google Scholar
Hyun, J.K., Ercius, P. & Muller, D.A. (2008). Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109, 17.Google Scholar
Krivanek, O.L., Dellby, N. & Lupini, A.R. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.Google Scholar
Lupini, A.R. & de Jonge, N. (2011). The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Microsc Microanal 17, 817826.Google Scholar
Michael, J.R. & Williams, D.B. (1987). A consistent definition of probe size and spatial-resolution in the analytical electron-microscope. J Microsc-Oxford 147, 289303.Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741. CrossRefGoogle ScholarPubMed
Newbury, D.E. & Myklebust, R.L. (1978). Monte-Carlo electron trajectory simulation of beam spreading in thin foil targets. Ultramicroscopy 3, 391395.CrossRefGoogle Scholar
Pawley, J.B. (1995). Handbook of Biological Confocal Microscopy. New York: Springer.CrossRefGoogle Scholar
Ramachandra, R. & de Jonge, N. (2012). Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy. Microsc Microanal 18, 218228.Google Scholar
Ramachandra, R., Demers, H. & de Jonge, N. (2011). Atomic-resolution scanning transmission electron microscopy through 50 nm-thick silicon nitride membranes. Appl Phys Lett 98, 93109-1–3.Google Scholar
Reed, S.J.B. (1982). The single-scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy 7, 405410.CrossRefGoogle Scholar
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation. New York: Springer.Google Scholar
Rose, A. (1948). Television pickup tubes and the problem of noise. Adv Electron 1, 131166.Google Scholar
Salvat, F., Jablonski, A. & Powell, C.J. (2007). ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput Phys Commun 165, 157190.Google Scholar
Takeguchi, M., Hashimoto, A., Shimojo, M., Mitsuishi, K. & Furuya, K. (2008). Development of a stage-scanning system for high-resolution confocal STEM. J Electron Microsc 57, 123127.Google Scholar
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.Google Scholar
van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S.J., Lee, J.H., Oxley, M.P., Findlay, S.D., Allen, L.J. & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104-1–3.Google Scholar
Wang, F., Zhang, H.B., Cao, M., Nishi, R. & Takaoka, A. (2010). Image quality of microns-thick specimens in the ultra-high voltage electron microscope. Micron 41, 490497.Google Scholar
Wen, J., Mabon, J., Lei, C., Burdin, S., Sammann, E., Petrov, I., Shah, A.B., Chobpattana, V., Zhang, J., Ran, K., Zuo, J.M., Mishina, S. & Aoki, T. (2010). The formation and utility of sub-angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the University of Illinois. Microsc Microanal 16, 183193.CrossRefGoogle ScholarPubMed
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc (Tokyo) 58, 157165.Google Scholar