Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T16:05:00.210Z Has data issue: false hasContentIssue false

Influence of Blue Light on the Leaf Morphoanatomy of In Vitro Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae)

Published online by Cambridge University Press:  30 July 2010

Marcos Vinicius Leal-Costa*
Affiliation:
Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Botânica, sala A1-104, Avenida Carlos Chagas Filho, Cidade Universitária, 21.941-902, Rio de Janeiro, Brazil Universidade Federal do Rio de Janeiro, Programa de pós-graduação em Biotecnologia Vegetal, Rio de Janeiro, Brazil
Luana Beatriz dos Santos Nascimento
Affiliation:
Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Botânica, sala A1-104, Avenida Carlos Chagas Filho, Cidade Universitária, 21.941-902, Rio de Janeiro, Brazil
Nattacha dos Santos Moreira
Affiliation:
Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Botânica, sala A1-104, Avenida Carlos Chagas Filho, Cidade Universitária, 21.941-902, Rio de Janeiro, Brazil
Fernanda Reinert
Affiliation:
Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Botânica, sala A1-104, Avenida Carlos Chagas Filho, Cidade Universitária, 21.941-902, Rio de Janeiro, Brazil Universidade Federal do Rio de Janeiro, Programa de pós-graduação em Biotecnologia Vegetal, Rio de Janeiro, Brazil
Sônia Soares Costa
Affiliation:
Universidade Federal do Rio de Janeiro, Núcleo de Pesquisas de Produtos Naturais, Rio de Janeiro, Brazil
Celso Luiz Salgueiro Lage
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil Universidade Federal do Rio de Janeiro, Programa de pós-graduação em Biotecnologia Vegetal, Rio de Janeiro, Brazil
Eliana Schwartz Tavares
Affiliation:
Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Botânica, sala A1-104, Avenida Carlos Chagas Filho, Cidade Universitária, 21.941-902, Rio de Janeiro, Brazil
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) (air plant, miracle leaf) is popularly used to treat gastrointestinal disorders and wounds. Recently, the species was tested to treat cutaneous leishmaniasis with successful results. This medicinal activity was associated with the phenolic fraction of the plant. Blue light induces biosynthesis of phenolic compounds and many changes in anatomical characteristics. We studied the effects of supplementary blue light on the leaf morphology of in vitro K. pinnata. Plants cultured under white light (W plants) only and white light plus blue light (WB plants) show petioles with plain-convex section, amphistomatic leaf blades with simple epidermis, homogeneous mesophyll with densely packed cells, and a single collateral vascular bundle in the midrib. W plants have longer branches, a larger number of nodes per branch, and smaller leaves, whereas WB plant leaves have a thicker upper epidermis and mesophyll. Leaf fresh weight and leaf dry weight were similar in both treatments. Phenolic idioblasts were observed in the plants supplemented with blue light, suggesting that blue light plays an important role in the biosynthesis of phenolic compounds in K. pinnata.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balsamo, R.A. & Uribe, E.G. (1988). Leaf anatomy and ultrastructure of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana. Planta 173, 183189.CrossRefGoogle ScholarPubMed
Caldwell, M.M., Robberecht, R. & Flint, S.D. (1983). Internal filters: Prospects for UV-acclimation in higher plants. Physiologia Plantarum 58, 445450.CrossRefGoogle Scholar
Cominelli, E., Gusmaroli, G., Allegra, D., Galbiati, M., Wade, H.K., Jenkins, G.I. & Tonelli, C. (2008). Expression analysis of anthocyanin regulatory genes in response to different Light qualities in Arabidopsis thaliana. J Plant Physiol 165, 886894.CrossRefGoogle ScholarPubMed
da-Silva, S.A.G., Costa, S.S. & Rossi-Bergmann, B. (1999). The anti-leishmanial effect of Kalanchoe is mediated by nitric oxide intermediates. Parasitology 118, 575582.CrossRefGoogle ScholarPubMed
Duarte, M.R. & Zaneti, C.C. (2002). Morfoanatomia de folhas de bálsamo: Sedum dendroideum Moc. et Sessé ex DC, Crassulaceae. Revista Lecta 20, 153160.Google Scholar
El-Khawas, S. & Khatab, H. (2007). Comparative studies on the effects of differents light qualities on Vigna sinensis L. and Phaseolus vulgaris L. seedlings. Res J Agricul Biol Sci 3, 790798.Google Scholar
Fila, G., Badeck, F-W., Meyer, S., Cerovic, Z. & Ghashghaie, J. (2006). Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. J Exp Botany 57, 26872695.CrossRefGoogle ScholarPubMed
Glowacka, B. (2004). The effect of blue light on the height and habit of the tomato (Licopersicum esculentum Mill.) transplant. Folia Horticulturae 16, 310.Google Scholar
Jaakola, L., Määttä-Riihinen, K., Kärenlampi, S. & Hohtola, A. (2004). Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218, 721728.Google ScholarPubMed
Jansen, M.A.K., Hectors, K., O'Brien, N.M., Guisez, Y. & Potters, G. (2008). Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Sci 175, 449458.CrossRefGoogle Scholar
Johansen, D.A. (1940). Plant Microtechnique. New York: McGraw-Hill Book Co. Inc.Google Scholar
Kondo, A., Nose, A. & Ueno, O. (1998). Leaf inner structure and immunogold localization of some key enzymes involved in carbon metabolism in CAM plants. J Exp Botany 49, 19531961.CrossRefGoogle Scholar
Kurilčik, A., Miklušytė-Čanova, R., Dapkūnienūė, S., Žilinskaitė, S., Kurilčik, G., Tamulaits, G., Duchovskis, P. & Žukauskas, A. (2008). In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent Eur J Biol 3, 161167.Google Scholar
Lans, C.A. (2006). Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed 2, 45 (online only).CrossRefGoogle ScholarPubMed
Larcher, W. (2000). Ecofisiologia Vegetal. São Carlos, Brazil: RiMa Artes e Textos.Google Scholar
Maffei, M., Canova, D., Bertea, C.M. & Scannerini, S. (1999). UV-A effects on photomorphogenesis and essential-oil composition in Mentha piperita. J Photoch Photobio B 52, 105110.CrossRefGoogle Scholar
Medeiros, M.F.T., Fonseca, V.S. & Andreata, R.H.P. (2004). Plantas medicinais e seus usos pelos sitiantes da Reserva Rio das Pedras, Mangaratiba, RJ, Brasil. Acta Bot Bras 18, 391399.CrossRefGoogle Scholar
Meier, D. & Lichtenthaler, H.K. (1981). Ultrastructural development of chloroplasts in radish seedlings grown at high- and low-light conditions and in the presence of the herbicide bentazon. Protoplasma 107, 195207.CrossRefGoogle Scholar
Meng, X., Xing, T. & Wang, X. (2004). The role of light in the regulation of anthocianin accumulation in Gerbera hybrida. Plant Growth Regul 44, 243250.CrossRefGoogle Scholar
Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol Plant 15, 473479.CrossRefGoogle Scholar
Muzitano, M.F., Cruz, E.A., Almeida, A.P., da-Silva, S.A.G., Kaiser, C.R., Guette, C., Rossi-Bergmann, B. & Costa, S.S. (2006a). Quercetrin: An antileishmanial flavonoid glycoside from Kalanchoe pinnata. Planta Medica 72, 8183.CrossRefGoogle ScholarPubMed
Muzitano, M.F., Tinoco, L.W., Guette, C., Kaiser, C.R., Rossi-Bergmann, B. & Costa, S.S. (2006b). The anti-leishmanial activity assessment of unusual flavonoids from Kalanchoe pinnata. Phytochemistry 67, 20712077.CrossRefGoogle Scholar
Namdeo, A.G. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Rev 1, 6979.Google Scholar
Nelson, E.A. & Sage, R.F. (2008). Functional constraints of CAM leaf anatomy: Tight cell packing is associated with increased CAM function across a gradient of CAM expression. J Exp Botany 59, 18411850.CrossRefGoogle ScholarPubMed
Nelson, E.A., Sage, T.L. & Sage, R.F. (2005). Functional leaf anatomy of plants with crassulacean acid metabolism. Funct Plant Biol 32, 409419.CrossRefGoogle ScholarPubMed
O'Brien, T.P., Feder, N. & McCully, M.E. (1965). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59, 368373.CrossRefGoogle Scholar
Oguchi, R., Hikosaka, K. & Hirose, T. (2003). Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26, 505512.CrossRefGoogle Scholar
Poudel, R.P., Kataoka, I. & Mochioka, R. (2008). Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tiss Org 92, 147153.CrossRefGoogle Scholar
Räisänen, T., Ryyppö, A. & Kellomäki, S. (2008). Effecs of elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus sylvestris L.). Atmosph Env 42, 41604171.CrossRefGoogle Scholar
Ramalingan, K. & Ravindranath, M.H. (1970). Histochemical significance of green metachromasia to toluidine blue. Histochemie 24, 322327.CrossRefGoogle Scholar
Rao, S.R. & Ravishankar, G.A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol Adv 20, 101153.Google ScholarPubMed
Rapparini, F., Rotondi, A. & Baraldi, R. (1999). Blue light regulation of the growth of Prunus persica plants in a long term experiment: Morphological and histological observation. Trees 14, 169176.Google Scholar
Saleh, A.A.H. (2007). Influence of UVA+B radiation and heavy metals on growth, some metabolic activities and antioxidant system in pea (Pisum sativum) plant. Am J Plant Physiol 2, 139154.CrossRefGoogle Scholar
Sarala, M., Taulavuori, K., Taulavuori, E., Karhu, J. & Laine, K. (2007). Elongation of Scots pine seedlings under blue light depletion is independent of etiolation. Environ Exp Bot 60, 340343.CrossRefGoogle Scholar
Schuerger, A.C., Brown, C.S. & Stryjewski, E.C. (1997). Anatomical features of pepper plants (Capsicum annum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann Bot-London 79, 273282.CrossRefGoogle ScholarPubMed
Shin, K.S., Murthy, H.N., Heo, J.W., Hahn, E.J. & Paek, K.Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant 30, 339343.CrossRefGoogle Scholar
Shirley, B.W. (1996). Flavonoid biosynthesis: “New” functions for an “old” pathway. Trends Plant Sci 1, 377382.Google Scholar
Spalding, E.P. & Folta, K.M. (2005). Illuminating topics in plant photobiology. Plant Cell Environ 28, 3953.CrossRefGoogle Scholar
Taiz, L. & Zeiger, E. (2009). Fisiologia Vegetal. Porto Alegre, Brazil: Artmed.Google Scholar
Taufner, C.F., Ferraço, E.B. & Ribeiro, L.F. (2006). Uso de plantas medicinais como alternativa fitoterápica nas unidades de saúde pública de Santa Teresa e Marilândia, ES. Natureza 4, 3039 (Online).Google Scholar
Tholen, D., Boom, C., Noguchi, K., Ueda, S., Katase, T. & Terashima, I. (2008). The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Environ 31, 16881700.CrossRefGoogle ScholarPubMed
Wade, H.K., Bibikova, T.N., Valentine, W.J. & Jenkins, G.I. (2001). Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J 25, 675685.CrossRefGoogle ScholarPubMed
Woźny, A. & Jerzy, M. (2007). Effect of light wavelength on growth and flowering of narcissi forced under short-day and low quantum irradiance conditions. J Hortic Sci Biotech 82, 924928.CrossRefGoogle Scholar
Yorio, N.C., Goins, G.D., Kagie, H.R., Wheeler, R.M. & Sager, J.C. (2001). Improving spinach, radish and lettuce growth under red light-enitting diodes (LEDs) with blue light supplementation. Hortscience 36, 380383.CrossRefGoogle ScholarPubMed