Article contents
In Situ Thermal Annealing Transmission Electron Microscopy (TEM) Investigation of III/V Semiconductor Heterostructures Using a Setup for Safe Usage of Toxic and Pyrophoric Gases
Published online by Cambridge University Press: 08 August 2017
Abstract
In this study we compare two thermal annealing series of III/V semiconductor heterostructures on Si, where during the first series nitrogen is present in the in situ holder. The second, comparative, measurement is done in a tertiarybutylphosphine (TBP) environment. The sample annealed in a TBP environment shows favorable thermal stability up to 500°C compared to the unstabilized sample, which begins to degrade at less than 300°C. Evaporation of P from the material is tracked qualitatively by measuring the thickness of the sample during thermal annealing with and without stabilization. Finally, we investigate the in situ thermal annealing processes at atomic resolution. Here it is possible to study phase separation as well as the diffusion of As from a Ga(NAsP) quantum well in the surrounding GaP material during thermal annealing. To make these investigations possible we developed an extension for our in situ transmission electron microscopy setup for the safe usage of toxic and pyrophoric III/V semiconductor precursors. A commercially available gas cell and gas supply system were expanded with a gas mixing system, an appropriate toxic gas monitoring system and a gas scrubbing system. These components allow in situ studies of semiconductor growth and annealing under the purity conditions required for these materials.
- Type
- Materials Science Applications
- Information
- Copyright
- © Microscopy Society of America 2017
References
- 9
- Cited by