Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T14:24:09.173Z Has data issue: false hasContentIssue false

In Situ Electron Energy-Loss Spectroscopy in Liquids

Published online by Cambridge University Press:  31 May 2013

Megan E. Holtz*
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
Yingchao Yu
Affiliation:
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
Jie Gao
Affiliation:
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
Héctor D. Abruña
Affiliation:
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
David A. Muller
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashcroft, N.W. & Mermin, N.D. (1976). Solid State Physics. Belmont, CA: Brooks Cole.Google Scholar
Botton, G.A., Lesperance, G., Gallerneault, C.E. & Ball, M.D. (1995). Volume fraction measurement of dispersoids in a thin foil by parallel energy-loss spectroscopy: Development and assessment of the technique. J Microsc Oxf 180, 217229.Google Scholar
Brunetti, G., Robert, D., Bayle-Guillemaud, P., Rouviere, J.L., Rauch, E.F., Martin, J.F., Colin, J.F., Bertin, F. & Cayron, C. (2011). Confirmation of the domino-cascade model by LiFePO4/FePO4 precession electron diffraction. Chem Mater 23(20), 45154524.Google Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci USA 106(7), 21592164.CrossRefGoogle ScholarPubMed
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6(11), 695704.Google Scholar
Demers, H., Ramachandra, R., Drouin, D. & de Jonge, N. (2012). The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens. Microsc Microanal 18(3), 582590.Google Scholar
Egerton, R.F. (1986). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.Google Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Letters 11(7), 28092813.Google Scholar
Haynes, W.M. (2012). CRC Handbook of Chemistry and Physics. Boca Raton, FL: Taylor & Francis, Inc. Google Scholar
Heller, J.M., Hamm, R.N., Birkhoff, R.D. & Painter, L.R. (1974). Collective oscillation in liquid water. J Chem Phys 60(9), 34833486.Google Scholar
Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. & Furuya, K. (2008). Thickness measurements with electron energy loss spectroscopy. Microsc Res Tech 71(8), 626631.Google Scholar
Jackson, J.D. (1999). Classical Electrodynamics. Hoboken, NJ: Wiley.Google Scholar
Jancso, G. (2005). Effect of D and O-18 isotope substitution on the absorption spectra of aqueous copper sulfate solutions. Radiat Phys Chem 74(3-4), 168171.Google Scholar
Johnson, D.W. & Spence, J.C.H. (1974). Determination of single-scattering probability distribution from plural-scattering data. J Phys D Appl Phys 7(6), 771780.Google Scholar
Jungjohann, K.L., Evans, J.E., Aguiar, J.A., Arslan, I. & Browning, N.D. (2012). Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc Microanal 18(3), 621627.Google Scholar
Kinyanjui, M.K., Axmann, P., Wohlfahrt-Mehrens, M., Moreau, P., Boucher, F. & Kaiser, U. (2010). Origin of valence and core excitations in LiFePO4 and FePO4 . J Phys Condes Matter 22(27), 275501. Google Scholar
Klein, K.L., Anderson, I.M. & de Jonge, N. (2011a). Transmission electron microscopy with a liquid flow cell. J Microsc 242(2), 117123.Google Scholar
Klein, K.L., de Jonge, N. & Anderson, I.M. (2011b). Energy-loss characteristics for EFTEM imaging with a liquid flow cell. Microsc Microanal 17(Suppl 2), 780781.Google Scholar
Malis, T., Cheng, S.C. & Egerton, R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8(2), 193200.Google Scholar
Moreau, P., Mauchamp, V., Pailloux, F. & Boucher, F. (2009). Fast determination of phases in LixFePO4 using low losses in electron energy-loss spectroscopy. Appl Phys Lett 94(12), 123111-1–3.CrossRefGoogle Scholar
Muller, D.A. & Silcox, J. (1995). Delocalization in inelastic-scattering. Ultramicroscopy 59(1-4), 195213.Google Scholar
Park, J., Zheng, H.M., Lee, W.C., Geissler, P.L., Rabani, E. & Alivisatos, A.P. (2012). Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 6(3), 20782085.CrossRefGoogle ScholarPubMed
Pines, D. & Nozières, P. (1989). The Theory of Quantum Liquids. Reading, MA: Addison-Wesley Publishing Company, Advanced Book Program.Google Scholar
Radisic, A., Ross, F.M. & Searson, P.C. (2006). In situ study of the growth kinetics of individual island electrodeposition of copper. J Phys Chem B 110(15), 78627868.Google Scholar
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy Physics of Image Formation. New York: Springer.Google Scholar
Sigle, W., Amin, R., Weichert, K., van Aken, P.A. & Maier, J. (2009). Delithiation study of LiFePO4 crystals using electron energy-loss spectroscopy. Electrochem Solid State Lett 12(8), A151A154.Google Scholar
Spence, J.C.H. (1979). Uniqueness and the inversion problem of incoherent multiple-scattering. Ultramicroscopy 4(1), 912.Google Scholar
Tao, F. & Salmeron, M. (2011). In situ studies of chemistry and structure of materials in reactive environments. Science 331(6014), 171174.Google Scholar
Tavernelli, I. (2006). Electronic density response of liquid water using time-dependent density functional theory. Phys Rev B 73(9), 094204. CrossRefGoogle Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2(8), 532536.Google Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077), 6164.Google Scholar
Zhang, H.R., Egerton, R.F. & Malac, M. (2012). Local thickness measurement through scattering contrast and electron energy-loss spectroscopy. Micron 43(1), 815.Google Scholar
Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324(5932), 13091312.Google Scholar
Supplementary material: PDF

Holtz Supplementary Material

Supplementary Material

Download Holtz Supplementary Material(PDF)
PDF 678.3 KB