Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T23:52:34.706Z Has data issue: false hasContentIssue false

In Situ Analytical Electron Microscopy Studies of Redox Reactions at a YSZ/Pt Interface

Published online by Cambridge University Press:  29 May 2012

Amir Hossein Tavabi*
Affiliation:
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
Shigeo Arai
Affiliation:
EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
Takayoshi Tanji
Affiliation:
EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Redox reactions were studied at a single yttria-stabilized zirconia (YSZ)/Pt electrode interface, in parallel with pure YSZ with no catalyst electrode, by in situ analytical electron microscopy at elevated temperatures and in an oxygen atmosphere. In situ electron holography showed that the oxide underwent reduction at elevated temperatures in a vacuum and was consequently reoxidized upon exposure to an oxygen flux at the same temperature. In situ energy loss spectroscopy measurements were in agreement with in situ electron holography observations and indicated that the oxidation state of the host cation zirconium was altered in the reduced state of the YSZ to the metastable state Zr3+.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Backhaus-Ricoult, M. (2006). Interface chemistry in LSM-YSZ composite SOFC cathodes. Solid State Ionics 177, 21952200.Google Scholar
Backhaus-Ricoult, M., Adib, K., St. Clair, T., Luerssen, B., Gregoratti, L. & Barinov, A. (2008). In situ study of operating SOFC LSM/YSZ cathodes under polarization by photoelectron microscopy. Solid State Ionics 179, 891895.CrossRefGoogle Scholar
Beck, G., Fischer, H., Mutoro, E., Srot, V., Petrikowski, K., Tchernychova, E., Wuttig, M., Rühle, M., Luerßen, B. & Janek, J. (2007). Epitaxial Pt(111) thin film electrodes on YSZ(111) and YSZ(100)—Preparation and characterization. Solid State Ionics 178, 327337.Google Scholar
Cheng, Z. & Liu, M. (2007). Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microscopy. Solid State Ionics 178, 925935.CrossRefGoogle Scholar
Douglass, D.L. & Wagner, C. (1966). The oxidation of oxygen-deficient zirconia and its relationship to the oxidation of zirconium. J Electrochem Soc 113(7), 671676.Google Scholar
Fu, C., Sun, K., Zhang, N., Chen, X. & Zhou, D. (2007). Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC. Electrochim Acta 52, 45894594.Google Scholar
Huang, H., Nakamura, M., Su, P., Fashing, R., Saito, Y. & Prinz, F.B. (2007). High-performance ultrathin solid oxide fuel cells for low temperature operation. J Electrochem Soc 154(1), B20B24.CrossRefGoogle Scholar
Jeangros, Q., Faes, A., Wagner, J.B., Hansen, T.W., Aschauer, U., Van Herle, J., Hessler-Wyser, A. & Dunin-Borkowski, R.E. (2010). In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscope. Acta Mater 58, 45784589.Google Scholar
Kim, S.D., Moon, H., Hyun, S.H., Moon, J., Kim, J. & Lee, H.W. (2006). Performance and durability of Ni-coated YSZ anodes for intermediate temperature solid oxide fuel cells. Solid State Ionics 177, 931938.CrossRefGoogle Scholar
Kishimoto, H., Sakai, N., Yamaji, K., Horita, T., Brito, M.E., Yokokawa, H., Amezawa, K. & Uchimoto, Y. (2008). Visualization of oxygen transport behavior at metal electrode/oxide electrolyte interface using secondary ion mass spectrometry. Solid State Ionics 179, 347354.Google Scholar
Lashtabeg, A. & Skinner, S.J. (2006). Solid oxide fuel cells—A challenge for materials chemists? J Mater Chem 16(31), 31613170.Google Scholar
Liu, Y.L., Primdahl, S. & Mogensen, M. (2003). Effects of impurities on microstructure in Ni/YSZ–YSZ half-cells for SOFC. Solid State Ionics 161, 110.CrossRefGoogle Scholar
Matsui, T., Saburi, C., Okuda, S., Muroyama, H. & Eguchi, K. (2011). Real-time sensing of methane steam reforming by YSZ oxygen sensor. Int J Hydrogen Energy 36(4), 29452949.Google Scholar
McCartney, M.R., Dunin-Borkowski, R.E. & Smith, D.J. (2005). Off-axis electron holography. In Handbook of Microscopy of Nanotechnology. Boston, MA: Kluwer Academic Publishers.Google Scholar
Mench, M.M. (2008). Fuel Cell Engines. Hoboken, NJ: John Wiley and Sons, Inc.CrossRefGoogle Scholar
Miura, N., Jin, H., Wama, R., Nakakubo, S., Elumalai, P. & Plashnitsa, V.V. (2011). Novel solid-state manganese oxide-based reference electrode for YSZ-based oxygen sensors. Sens Actuators B 152(2), 261266.Google Scholar
Moritomo, H., Oura, K., Tanji, T. & Enomoto, S. (2006). New specimen holder with 4 electrodes. Proc IMC16 2, 1154.Google Scholar
Mutoro, E., Günther, S., Luerßen, S., Valov, I. & Janek, J. (2008). Electrode activation and degradation: Morphology changes of platinum electrodes on YSZ during electrochemical polarization. Solid State Ionics 179, 18351848.Google Scholar
Nielsen, J. & Jacobsen, T. (2007). Three-phase-boundary dynamics at Pt/YSZ microelectrodes. Solid State Ionics 178, 10011009.Google Scholar
O'Hayre, R., Cha, S.W., Colella, W. & Prinz, F.B. (2009). Fuel Cell Fundamentals, 2nd ed.Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Plashnitsa, V.V., Elumalai, P., Fujio, Y. & Miura, N. (2009). Zirconia-based electrochemical gas sensors using nano-structured sensing materials aiming at detection of automotive exhausts. Electrochim Acta 54, 60996106.Google Scholar
Princivalle, A. & Djurado, E. (2008). Nanostructured LSM/YSZ composite cathodes for IT-SOFC: A comprehensive microstructural study by electrostatic spray deposition. Solid State Ionics 179, 19211928.Google Scholar
Rau, W.D., Schwander, P., Baumann, F.H., Höppner, W. & Ourmazd, A. (1999). Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys Rev Lett 82(12), 26142617.Google Scholar
Sammes, N. (2006). Fuel Cell Technology—Reaching Towards Commercialization (Engineering Materials and Processes), 1st ed.New York: Springer.Google Scholar
Singhal, S.C. & Kendall, K. (2003). High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Oxford, UK: Elsevier.Google Scholar
Soldati, A.L., Baque, L., Troiani, H., Cotaro, C., Schreiber, A., Caneiro, A. & Serquis, A. (2011). High resolution FIB-TEM and FIB-SEM characterization of electrode/electrolyte interfaces in solid oxide fuel cells materials. Int J Hydrogen Energy 36(15), 91809188.Google Scholar
Srot, V., Watanabe, M., Scheu, C., Van Aken, P.A., Salzberger, U., Lueßen, B., Janek, J. & Rühle, M. (2010). Characterization of chemical composition and electronic structure of Pt/YSZ interfaces by analytical transmission electron microscopy. Solid State Ionics 181(35-36) 16161622.Google Scholar
Tanji, T., Moritomo, H., Shimura, T., Kato, T. & Hirayama, T. (2007). Electron holography of a hetero-interface in a solid oxide fuel cell. Microsc Microanal 13(Suppl 2), CD1224CD1225.Google Scholar
Tavabi, A.H. & Tanji, T. (2011). First observation of ionic conductivity and reaction mechanism in solid oxide fuel cells by in situ electron holography. Solid State Ionics 18, 34.Google Scholar
Tavabi, A.H., Yasenjiang, Z. & Tanji, T. (2011). In situ off-axis electron holography of metal-oxide hetero-interfaces in oxygen atmosphere. J Electron Micros 60(5), 307314.Google Scholar
Tonomura, A. (1999). Electron Holography, 2nd ed.Springer Series in Optical Sciences, Vol. 70. Berlin: Springer.Google Scholar
Zha, S., Rauch, W. & Liu, M. (2004). Ni-Ce0.9Gd0.1O1.95 anode for GDC electrolyte-based low-temperature SOFCs. Solid State Ionics 166, 241250.Google Scholar