Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T09:02:16.176Z Has data issue: false hasContentIssue false

Improving the Quantification of Deuterium in Zirconium Alloy Atom Probe Tomography Data Using Existing Analysis Methods

Published online by Cambridge University Press:  01 October 2021

Megan E. Jones*
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Andrew J. London
Affiliation:
UK Atomic Energy Authority, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK
Andrew J. Breen
Affiliation:
Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, Düsseldorf, Germany
Paul D. Styman
Affiliation:
National Nuclear Laboratory, Culham Science Centre, Abingdon OX14 3DB, UK
Shyam Sikotra
Affiliation:
Rolls-Royce Plc, PO Box 2000, Raynesway, Derby DE21 7XX, UK
Michael P. Moody
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Daniel Haley
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
*
*Corresponding author: Megan E. Jones, E-mail: [email protected]
Get access

Abstract

Zirconium alloys are common fuel claddings in nuclear fission reactors and are susceptible to the effects of hydrogen embrittlement. There is a need to be able to detect and image hydrogen at the atomic scale to gain the experimental evidence necessary to fully understand hydrogen embrittlement. Through the use of deuterium tracers, atom probe tomography (APT) is able to detect and spatially locate hydrogen at the atomic scale. Previous works have highlighted issues with quantifying deuterium concentrations using APT due to complex peak overlaps in the mass-to-charge-state ratio spectrum between molecular hydrogen and deuterium (H2 and D). In this work, we use new methods to analyze historic and simulated atom probe data, by applying currently available data analysis tools, to optimize solving peak overlaps to improve the quantification of deuterium. This method has been applied to literature data to quantify the deuterium concentrations in a concentration line profile across an α-Zr/deuteride interface.

Type
Detection of Hydrogen
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, S (2001). Nuclear applications: Zirconium alloys. In Encyclopedia of Materials: Science and Technology, 2nd ed., pp. 62876299. Available at http://www.sciencedirect.com/science/article/pii/B0080431526011177%5Cnhttp://ac.els-cdn.CrossRefGoogle Scholar
Breen, AJ, Mouton, I, Lu, W, Wang, S, Szczepaniak, A, Kontis, P, Stephenson, LT, Chang, Y, da Silva, AK, Liebscher, CH, Raabe, D, Britton, TB, Herbig, M & Gault, B (2018). Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4. Scr Mater 156, 4246.CrossRefGoogle Scholar
Breen, AJ, Stephenson, LT, Sun, B, Li, Y, Kasian, O, Raabe, D, Herbig, M & Gault, B (2020). Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel. Acta Mater 188, 108120.CrossRefGoogle Scholar
Chen, Y-S, Haley, D, Gerstl, SSA, London, AJ, Sweeney, F, Wepf, RA, Rainforth, WM, Bagot, PAJ & Moody, MP (2017). Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science 355, 11961199.CrossRefGoogle Scholar
Couet, A, Motta, AT & Comstock, RJ (2014). Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics. J Nucl Mater 451, 113.CrossRefGoogle Scholar
Ensor, B, Lucente, AM, Frederick, MJ, Sutliff, J & Motta, AT (2017). The role of hydrogen in zirconium alloy corrosion. J Nucl Mater 496, 301312.CrossRefGoogle Scholar
Gemma, R, Al-Kassab, T, Kirchheim, R & Pundt, A (2009). APT analyses of deuterium-loaded Fe/V multi-layered films. Ultramicroscopy 109, 631636.CrossRefGoogle ScholarPubMed
Hudson, D (2011). Zirconium Oxidation on the Atomic Scale. Oxford: University of Oxford.Google Scholar
Jiang, W, Luscher, WG, Wang, T, Zhu, Z, Shao, L & Senor, DJ (2020). A quantitative study of retention and release of deuterium and tritium during irradiation of γ-LiAlO2 pellets. J Nucl Mater 542, 152532.CrossRefGoogle Scholar
Johnson, LJS, Thuvander, M, Stiller, K, Odén, M & Hultman, L (2013). Blind deconvolution of time-of-flight mass spectra from atom probe tomography. Ultramicroscopy 132, 6064.CrossRefGoogle ScholarPubMed
Jones, C, Tuli, V, Shah, Z, Gass, M, Burr, PA, Preuss, M & Moore, KL (2021). Evidence of hydrogen trapping at second phase particles in zirconium alloys. Sci Rep 11, 4370.CrossRefGoogle ScholarPubMed
Kautz, EJ, Devaraj, A, Senor, DJ & Harilal, SS (2021). Hydrogen isotopic analysis of nuclear reactor materials using ultrafast laser-induced breakdown spectroscopy. Opt Expr 29, 4936. doi:10.1364/OE.412351.CrossRefGoogle ScholarPubMed
Kingham, DR (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273301.CrossRefGoogle Scholar
Kunimune, Y, Shimada, Y, Sakurai, Y, Inoue, M, Nishida, A, Han, B, Tu, Y, Takamizawa, H, Shimizu, Y, Inoue, K, Yano, F, Nagai, Y, Katayama, T & Ide, T (2016). Quantitative analysis of hydrogen in SiO2/SiN/SiO2 stacks using atom probe tomography. AIP Adv 6, 045121. doi:10.1063/1.4948558CrossRefGoogle Scholar
Li, K, Liu, J, Grovenor, CRM & Moore, KL (2020). NanoSIMS imaging and analysis in materials science. Annu Rev Anal Chem 13, 273292.CrossRefGoogle ScholarPubMed
London, AJ (2019). Quantifying uncertainty from mass-peak overlaps in atom probe microscopy. Microsc Microanal 25, 378388.CrossRefGoogle ScholarPubMed
London, AJ, Haley, D & Moody, MP (2017). Single-Ion deconvolution of mass peak overlaps for atom probe microscopy. In Microscopy and Microanalysis, Mansfield, J (Ed.), vol. 23, pp. 300306. Ann Arbor, MI: Cambridge University Press.Google Scholar
Maus, M, Cotlet, M, Hofkens, J, Gensch, T, De Schryver, FC, Schaffer, J & Seidel, CAM (2001). An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal Chem 73, 20782086.CrossRefGoogle ScholarPubMed
Meisenkothen, F, Samarov, DV, Kalish, I & Steel, EB (2020). Exploring the accuracy of isotopic analyses in atom probe mass spectrometry. Ultramicroscopy 216, 113018.CrossRefGoogle ScholarPubMed
Meyer, JC, Girit, CO, Crommie, MF & Zettl, A (2008). Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 319322.CrossRefGoogle Scholar
Motta, AT, Capolungo, L, Chen, LQ, Cinbiz, MN, Daymond, MR, Koss, DA, Lacroix, E, Pastore, G, Simon, PCA, Tonks, MR, Wirth, BD & Zikry, MA (2019). Hydrogen in zirconium alloys: A review. J Nucl Mater 518, 440460.CrossRefGoogle Scholar
Motta, AT, Couet, A & Comstock, RJ (2015). Corrosion of zirconium alloys used for nuclear fuel cladding. Annu Rev Mater Res 45, 311343.CrossRefGoogle Scholar
Mouton, I, Breen, AJ, Wang, S, Chang, Y, Szczepaniak, A, Kontis, P, Stephenson, LT, Raabe, D, Herbig, M, Britton, TB & Gault, B (2019). Quantification challenges for atom probe tomography of hydrogen and deuterium in Zircaloy-4. Microsc Microanal 25, 481488.CrossRefGoogle ScholarPubMed
Müller, M, Saxey, DW, Smith, GDW & Gault, B (2011). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111, 487492.CrossRefGoogle ScholarPubMed
Pardede, M, Lie, TJ, Iqbal, J, Bilal, M, Hedwig, R, Ramli, M, Khumaeni, A, Budi, WS, Idris, N, Abdulmadjid, SN, Marpaung, AM, Karnadi, I, Tanra, I, Lie, ZS, Suyanto, H, Kurniawan, DP, Kurniawan, KH, Kagawa, K & Tjia, MO (2019). H-D analysis employing energy transfer from metastable excited-state He in double-pulse LIBS with low-pressure He gas. Anal Chem 91, 15711577.CrossRefGoogle ScholarPubMed
Sepehri-Amin, H, Ohkubo, T, Nishiuchi, T, Hirosawa, S & Hono, K (2011). Quantitative laser atom probe analyses of hydrogenation-disproportionated Nd-Fe-B powders. Ultramicroscopy 111, 615618.CrossRefGoogle ScholarPubMed
Shariq, A, Mutas, S, Wedderhoff, K, Klein, C, Hortenbach, H, Teichert, S, Kücher, P & Gerstl, SSA (2009). Investigations of field-evaporated end forms in voltage- and laser-pulsed atom probe tomography. Ultramicroscopy 109, 472479.CrossRefGoogle ScholarPubMed
Sundell, G, Thuvander, M & Andrén, HO (2013). Hydrogen analysis in APT: Methods to control adsorption and dissociation of H2. Ultramicroscopy 132, 285289.CrossRefGoogle Scholar
Takahashi, J, Kawakami, K, Kobayashi, Y & Tarui, T (2010). The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr Mater 63, 261264.CrossRefGoogle Scholar
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Tsong, TT, Kinkus, TJ & Ai, CF (1983). Field induced and surface catalyzed formation of novel ions: A pulsed-laser time-of-flight atom-probe study. J Chem Phys 78, 47634775. doi:10.1063/1.445276.CrossRefGoogle Scholar
Wadman, B, Andrén, H-O & Rolander, U (1988). Preferential field evaporation during atom probe analysis of Zircaloy-4. J Phys C6, 323327.Google Scholar
Supplementary material: File

Jones et al. supplementary material

Jones et al. supplementary material 1

Download Jones et al. supplementary material(File)
File 15 KB
Supplementary material: File

Jones et al. supplementary material

Jones et al. supplementary material 2

Download Jones et al. supplementary material(File)
File 992.6 KB