Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T03:00:34.378Z Has data issue: false hasContentIssue false

Improving Primary Ciliary Dyskinesia Diagnosis Using Artificial Intelligence

Published online by Cambridge University Press:  30 July 2020

Andreia do Nascimento Pinto
Affiliation:
Royal Brompton Hospital, London, England, United Kingdom
Laurens Hogeweg
Affiliation:
Cosmonio, Cranfield, England, United Kingdom
Ioannis Katramados
Affiliation:
Cosmonio, Cranfield, England, United Kingdom
Oliver Hamilton
Affiliation:
Cosmonio, Cranfield, England, United Kingdom
Amelia Shoemark
Affiliation:
Royal Brompton Hospital, London, England, United Kingdom
Thomas Burgoyne
Affiliation:
Royal Brompton Hospital, London, England, United Kingdom
Claire Hogg
Affiliation:
Royal Brompton Hospital, London, England, United Kingdom

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advances in Modeling, Simulation, and Artificial Intelligence in Microscopy and Microanalysis for Physical and Biological Systems
Copyright
Copyright © Microscopy Society of America 2020

References

Shoemark, Amelia, et al. . Primary ciliary dyskinesia with normal ultrastructure: three-dimensional tomography detects absence of DNAH11. European Respiratory Journal 2018 51: 1701809; DOI: 10.1183/13993003.01809-201710.1183/13993003.01809-2017CrossRefGoogle ScholarPubMed