Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T00:29:38.178Z Has data issue: false hasContentIssue false

Improved Sealing and Remineralization at the Resin-Dentin Interface After Phosphoric Acid Etching and Load Cycling

Published online by Cambridge University Press:  16 October 2015

Manuel Toledano*
Affiliation:
Faculty of Dentistry, University of Granada, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Inmaculada Cabello
Affiliation:
Faculty of Dentistry, University of Granada, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Fátima S. Aguilera
Affiliation:
Faculty of Dentistry, University of Granada, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Estrella Osorio
Affiliation:
Faculty of Dentistry, University of Granada, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Manuel Toledano-Osorio
Affiliation:
Faculty of Dentistry, University of Granada, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Raquel Osorio
Affiliation:
Faculty of Dentistry, University of Granada, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
*
*Corresponding author. [email protected]
Get access

Abstract

The purpose of this study was to investigate micro-morphology of the resin-dentin inter-diffusion zone using two different single-bottle self-etching dentin adhesives with and without previous acid-etching, after in vitro mechanical loading stimuli. Extracted human third molars were sectioned to obtain dentin surfaces. Two different single-bottle self-etching dentin adhesives, Futurabond U and Experimental both from VOCO, were applied following the manufacturer’s instructions or after 37% phosphoric acid application. Resin-dentin interfaces were analyzed with dye assisted confocal microscopy evaluation (CLSM), including the calcium-chelation technique, xylenol orange (CLSM-XO). CLSM revealed that resin-dentin interfaces of unloaded specimens were deficiently resin-hybridized, in general. These samples showed a Rhodamine B-labeled hybrid complex and adhesive layer completely affected by fluorescein penetration (nanoleakage) through the porous resin-dentin interface, but thicker after PA-etching. Load cycling promoted an improved sealing of the resin-dentin interface at dentin, a decrease of the hybrid complex porosity, and an increment of dentin mineralization. Load cycled specimens treated with the XO technique produced a clearly outlined fluorescence due to consistent Ca-mineral deposits within the bonding interface and inside the dentinal tubules, especially when the experimental adhesive was applied.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertassoni, L.E., Habelitz, S., Pugach, M., Soares, P.C., Marshall, S.J. & Marshall, G.W. Jr. (2010). Evaluation of surface structural and mechanical changes following remineralisation of dentin. Scanning 32, 312319.Google Scholar
Burrow, M.F., Inokoshi, S. & Tagami, J. (1999). Water sorption of several bonding resins. Am J Dent 12, 295298.Google Scholar
Carvalho, R.M., Mendonça, J.S., Santiago, S.L., Silveira, R.R., Garcia, F.C., Tay, F.R. & Pashley, D.H. (2003). Effects of HEMA/solvent combinations on bond strength to dentin. J Dent Res 82, 597601.Google Scholar
D’Alpino, P.H., Pereira, J.C., Svizero, N.R., Rueggeberg, F.A. & Pashley, D.H. (2006). Factors affecting use of fluorescent agents inidentification of resin-based polymers. J Adhes Dent 8, 285292.Google Scholar
De Munck, J., Mine, A., Van den Steen, P.E., Van Landuyt, K.L., Poitevin, A., Opdenakker, G. & Van Meerbeek, B. (2010). Enzymatic degradation of adhesive-dentin interfaces produced by mild self-etch adhesives. Eur J Oral Sci 118, 494501.Google Scholar
De Oliveira, M.T., Arrais, C.A., Aranha, A.C., de Paula Eduardo, C., Miyake, K., Rueggeberg, F.A. & Giannini, M. (2010). Micromorphology of resin-dentin interfaces using one-bottle etch&rinse and self-etching adhesive systems on laser-treated dentin surfaces: A confocal laser scanning microscope analysis. Lasers Surg Med 42, 662670.Google Scholar
Erhardt, M.C., Pisani-Proença, J., Osorio, E., Aguilera, F.S., Toledano, M. & Osorio, R. (2011). Influence of laboratory degradation methods and bonding application parameters on microTBS of self-etch adhesives to dentin. Am J Dent 24, 103108.Google Scholar
Frankenberger, R., Pashley, D.H., Reich, S.M., Lohbauer, U., Petschelt, A. & Tay, F.R. (2005). Characterisation of resin–dentineinterfaces by compressive cyclic loading. Biomaterials 26, 20432052.Google Scholar
Griffiths, B.M., Watson, T.F. & Sherriff, M. (1999). The influence of dentinebonding systems and their handling characteristics on themorphology and micropermeability of the adhesive interface. J Dent 27, 6371.Google Scholar
Innocenzi, P., Malfatti, L., Costacurta, S., Kidchob, T., Piccinini, M. & Marcelli, A. (2008). Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy. J Phys Chem A 112, 65126516.CrossRefGoogle ScholarPubMed
Jacobsen, T. & Söderholm, K.J. (1995). Some effects of water on dentin bonding. Dent Mater 11, 132136.Google Scholar
Koibuchi, H., Yasuda, N. & Nakabayashi, N. (2001). Bonding to dentin with a self-etching primer: The effect of smear layers. Dent Mater 17, 122126.Google Scholar
Kokubo, T. & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomater 27, 29072915.CrossRefGoogle ScholarPubMed
Li, L., Zhu, Y.Q., Jiang, L., Peng, W. & Ritchie, H.H. (2011). Hypoxia promotes mineralization of human dental pulp cells. J Endod 37, 799802.CrossRefGoogle ScholarPubMed
Lozupone, E., Palumbo, C., Favia, A., Ferretti, M., Palazzini, S. & Cantatore, F.P. (1996). Intermittent compressive load stimulates osteogenesis and improves osteocyte viability in bones cultured “in vitro”. Clin Rheumatol 15, 563572.Google Scholar
McAllister, T.N. & Frangos, J.A. (1999). Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 14, 930936.CrossRefGoogle ScholarPubMed
Moszner, N., Salz, U. & Zimmermann, J. (2005). Chemical aspects of self-etching enamel-dentin adhesives: A systematic review. Dent Mater 21, 895910.Google Scholar
Nakabayashi, N. & Saimi, Y. (1996). Bonding to intact dentin. J Dent Res 75, 17061715.Google Scholar
Nakabayashi, N., Watanabe, A. & Gendusa, N.J. (1992). Dentin adhesion of “modified” 4-META/MMA-TBB resin: Function of HEMA. Dent Mater 8, 259264.CrossRefGoogle ScholarPubMed
Osorio, R., Osorio, E., Aguilera, F.S., Tay, F.R., Pinto, A. & Toledano, M. (2010). Influence of application parameters on bond strength of an “all in one” water-based self-etching primer/adhesive after 6 and 12 months of water aging. Odontology 98, 117125.Google Scholar
Osorio, R., Osorio, E., Cabello, I. & Toledano, M. (2014). Zinc induces apatite and scholzite formation during dentin remineralization. Caries Res 48, 276290.CrossRefGoogle ScholarPubMed
Oguri, M., Yoshida, Y., Yoshihara, K., Miyauchi, T., Nakamura, Y., Shimoda, S., Hanabusa, M., Momoi, Y. & Van Meerbeek, B. (2012). Effects of functional monomers and photo-initiators on the degree of conversion of a dental adhesive. Acta Biomater 8, 19281934.Google Scholar
Pashley, E.L., Zhang, Y., Lockwood, P.E., Rueggeberg, F.A. & Pashley, D.H. (1998). Effects of HEMA on water evaporation from water-HEMA mixtures. Dent Mater 14, 610.Google Scholar
Pawley, J.B. (2006). Handbook of Biological Confocal Microscopy. Maddison, USA: Springer.CrossRefGoogle Scholar
Posner, A.S., Blumenthal, N.C. & Boskey, A.L. (1986). Model of aluminum-induced osteomalacia: Inhibition of apatite formation and growth. Kidney Int 18, S17S19.Google Scholar
Profeta, A.C., Mannocci, F., Foxton, R., Watson, T.F., Feitosa, V.P., De Carlo, B., Mongiorgi, R., Valdré, G. & Sauro, S. (2013). Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces. Dent Mater 29, 729741.Google Scholar
Reijnders, C.M., van Essen, H.W., van Rens, B.T., van Beek, J.H., Ylstra, B., Blankenstein, M.A., Lips, P. & Bravenboer, N. (2013). Increased expression of Matrix Extracellular Phosphoglycoprotein (MEPE) in cortical bone of the rat tibia after mechanical loading: Identification by oligonucleotide microarray. PLoS One 8, e79672.Google Scholar
Sauro, S., Osorio, R., Fulgencio, R., Watson, T.F., Cama, G., Thompson, I. & Toledano, M. ( 2013). Remineralisation properties of innovative light-curable resin-based dental materials containing bioactive micro-fillers. J Mater Chem B 1, 26242638.CrossRefGoogle Scholar
Sauro, S., Osorio, R., Watson, T.F. & Toledano, M. (2012). Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentin interface. J Mater Sci Mater Med 23, 15211532.CrossRefGoogle Scholar
Sideridou, I., Tserki, V. & Papanastasiou, G. (2002). Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 23, 18191829.Google Scholar
Smith, A.J., Scheven, B.A., Takahashi, Y., Ferracane, J.L., Shelton, R.M. & Cooper, P.R. (2012). Dentin as a bioactive extracellular matrix. Arch Oral Biol 57, 109121.Google Scholar
Spedding, P.L., Grimshaw, J. & O’Hare, K.D. (1993). Abnormal evaporation rate of ethanol from low concentration aqueous solutions. Langmuir 9, 14081413.Google Scholar
Spencer, P., Ye, Q., Park, J., Topp, E.M., Misra, A., Marangos, O., Wang, Y., Bohaty, B.S., Singh, V., Sene, F., Eslick, J., Camarda, K. & Katz, J.L. (2010). Adhesive/dentin interface: The weak link in the composite restoration. Ann Biomed Eng 38, 19892003.CrossRefGoogle ScholarPubMed
Tay, F.R., Gwinnett, J.A. & Wei, S.H. (1996). Micromorphological spectrum from overdrying to overwetting acid-conditioned dentin in water-free acetone-based, single-bottle primer/adhesives. Dent Mater 12, 236244.Google Scholar
Tay, F.R., Gwinnett, J.A. & Wei, S.H. (1998). Relation between water content in acetone/alcohol-based primer and interfacial ultrastructure. J Dent 26, 147156.Google Scholar
Tay, F.R. & Pashley, D.H. ( 2003). Have dentin adhesives become too hydrophilic? J Can Dent Assoc 69, 726731.Google Scholar
Tay, F.R., Pashley, D.H., Suh, B.I., Carvalho, R.M. & Itthagarun, A. (2002). Single-step adhesives are permeable membranes. J Dent 30, 371382.Google Scholar
Toledano, M., Aguilera, F.S., Osorio, E., Cabello, I., Toledano-osorio, M. & Osorio, R. (2015). Bond strength and bioactivity of Zn-doped dental adhesives promoted by load cycling. Microsc Microanal 21, 214230.Google Scholar
Toledano, M., Aguilera, F.S., Yamauti, M., Ruiz-Requena, M.E. & Osorio, R. (2013 a). In vitro load-induced dentin collagen-stabilization against MMPs degradation. J Mech Behav Biomed 27, 1018.CrossRefGoogle ScholarPubMed
Toledano, M., Sauro, S., Cabello, I., Watson, T.F. & Osorio, R. (2013 b). A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater 29, e142e152.Google Scholar
Toledano, M., Osorio, E., Aguilera, F.S., Sauro, S., Cabello, I. & Osorio, R. (2014 a). In vitro mechanical stimulation promoted remineralization at the resin/dentin interface. J Mech Behav Biomed Mater 30, 6174.CrossRefGoogle ScholarPubMed
Toledano, M., Aguilera, F.S., Sauro, S., Cabello, I., Osorio, E. & Osorio, R. (2014 b). Load cycling enhances bioactivity at the resin-dentin interface. Dent Mater 30, e169e188.Google Scholar
Toledano, M., Aguilera, F.S., Cabello, I. & Osorio, R. (2014 c). Remineralization of mechanical loaded resin-dentin interface: A transitional and synchronized multistep process. Biomech Model Mechanobiol 13, 12891302.Google Scholar
Toledano, M., Aguilera, F.S., Osorio, E., Cabello, I. & Osorio, R. (2014 d). Microanalysis of thermal-induced changes at the resin-dentin interface. Microsc Microanal 20, 12181233.Google Scholar
Toledano, M., Aguilera, F.S., Cabello, I. & Osorio, R. (2014 e). Masticatory function induced changes, at subnanostructural level, in proteins and mineral at the resin-dentine interface. J Mech Behav Biomed Mater 39, 197209.Google Scholar
Toledano, M., Cabello, I., Aguilera, F.S., Osorio, E. & Osorio, R. (2014 f). Effect of in vitro chewing and bruxism events on remineralization, at the resin-dentin interface. J Biomech 48, 1421.CrossRefGoogle ScholarPubMed
Toledano, M., Yamauti, M., Ruiz-Requena, M.E. & Osorio, R. (2012). ZnO-doped adhesive reduced collagen degradation favouring dentin remineralisation. J Dent 40, 756765.Google Scholar
Van Landuyt, K.L., Snauwaert, J., De Munck, J., Peumans, M., Yoshida, Y., Poitevin, A., Coutinho, E., Suzuki, K., Lambrechts, P. & Van Meerbeek, B. (2007). Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28, 37573785.Google Scholar
Van Meerbeek, B., Vargas, M., Inoue, S., Yoshida, Y., Perdigão, J., Lambrechts, P. & Vanherle, G. (2000). Microscopy investigations. Techniques, results, limitations. Am J Dent 13, 3D18D.Google Scholar