Published online by Cambridge University Press: 02 July 2020
Direct methanol fuel cells (DMFCs) offer a simpler, safer technology for point-of-use power sources compared to other hydrogen fuel cells, by avoiding the need to store hydrogen fuel or to carry out the reformation of hydrocarbons. The direct methanol oxidation electrocatalyst of choice is a nanoscale black consisting of a 50:50 atom % mixture of Pt and Ru. It has recently become known that these presumed bimetallic alloys in fact contain an array of metal, oxide and hydrous phases, which are easily misidentified in routine x-ray diffraction measurements due to particle size-broadening and poor crystallinity. By combining transmission electron microscopy, electrochemistry and thermogravimetric studies, we demonstrate here that the route to improved catalytic activity is not by phase purification of the bimetallic alloys, but instead phase engineering of hydrous ruthenium oxide and Pt mixtures.