Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T03:51:21.075Z Has data issue: false hasContentIssue false

The Impact of Biological Microanalysis on Analytical Electron Microscopy

Published online by Cambridge University Press:  02 July 2020

Andrew P. Somlyo*
Affiliation:
Departments of Molecular Physiology and Biological Physics and Internal Medicine, University of Virginia, Charlottesville, Virginia, 22906
Get access

Extract

Advances in energy-dispersive detector technology were largely responsible for electron probe microanalysis (EPMA) becoming a valuable tool for biologists, while development of EPMA received much impetus from the special needs of biological research. Solid-state energy-dispersive detectors placed in close proximity to specimens in transmission electron microscopes (TEMs) provided the necessary geometric detection efficiency, hence sensitivity and higher spatial resolution, and the reasonably good energy resolution of these detectors permitted reliable separation of overlapping peaks, such as the Kα peak of the biologically important messenger, calcium, and the Kβ peak of another, biologically much more abundant element, potassium. Improvements in the pole-piece design of TEMs to allow closer access of the X-ray detector to the specimen and interfacing the software of one company with detectors provided by another also helped progress, and EPMA, in conjunction with rapid freezing of cells, was ready to address important biological problems, such as the dynamics of the composition of intracellular organelles in situ.

Type
30 Years of Energy Dispersive Spectrometry in Microanalysis
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baumann, O. et al., Proc. Natl. Acad. Sci. USA 88(1991)741.CrossRefGoogle Scholar
2.Bond et, M. al., J. Physiol. (Lond.) 357(1984)185.CrossRefGoogle Scholar
3.Eckenhoff, R.G. and Somlyo, A.P., Toxicol. Appl. Pharmacol. 97(1989)167.CrossRefGoogle Scholar
4.Egerton, R.F., Electron Energy-loss Spectroscopy in the Electron Microscopy, New York Plenum Press (1996).CrossRefGoogle Scholar
5.Hall, T. A.in Physical Techniques in Biological Research, New York Academic Press (1971)158.Google Scholar
6.Horikawa, Y. et al., Biophys. J. 74(1998; in press).CrossRefGoogle Scholar
7.Isaacson, M. and Johnson, D.E., Ultramicroscopy 1(1975)33.CrossRefGoogle Scholar
8.Kitazawa, T. et al., Ultramicroscopy 11(1983)251.CrossRefGoogle Scholar
9.Leapman, R.D. and Hunt, J.A., Micro. Microanal. Microstruct. 2(1991)231.CrossRefGoogle Scholar
10.Leapman, R.D. et al., Scanning Microsc. Suppl. 8(1994)245.Google Scholar
11.LeFurgey, A. et al., Ultramicroscopy 24(1988)185.CrossRefGoogle Scholar
12.Miller, T.W. and Tormey, J.McD., Cardiovasc. Res. 2(1995)85.Google Scholar
13.Moravec, C.S. and Bond, M., J. Biol. Chem. 267(1992)5310.CrossRefGoogle Scholar
14.Moravec, C.S. et al., Am. J. Physiol. 273(1997)H1432.Google Scholar
15.Ornberg, R.L. et al., J. Biol. Chem. 263(1988)1488.CrossRefGoogle Scholar
16.Schamber, F.H., in Dzubay, T., Ed., X-ray Fluorescence Analysis of Environmental Samples, Ann Arbor Science Publications (1977)241.Google Scholar
17.Shuman, H. and Somlyo, A.P., Proc. Natl. Acad. Sci. USA 79(1982)106.CrossRefGoogle Scholar
18.Shuman, H. and Somlyo, A.P., Ultramicroscopy 21(1987)23.CrossRefGoogle Scholar
19.Shuman, H. et al., Ultramicroscopy 1(1976)317.CrossRefGoogle Scholar
20.Somlyo, A.P., Cell Calc. 6(1985)197.CrossRefGoogle Scholar
21.Somlyo, A.P. et al., in Bronner, F. and Peterlik, M., Eds., Calcium Phosphate Transport Across Biomembranes, New York Academic Press (1981)87.CrossRefGoogle Scholar
22.Somlyo, A.P. and Shuman, H., Ultramicroscopy 8(1982)219.CrossRefGoogle Scholar
23.Somlyo, A.P. et al., Nature 314(1985)622.CrossRefGoogle Scholar
24.Somlyo, A.P. et al., Biochem. Biophys. Res. Commun. 132(1985)1071.CrossRefGoogle Scholar
25.Somlyo, A.P. et al., in Eaton, D.C. and Mandel, L.J., Eds., Cell Calcium and the Control of Membrane Transport, New York The Rockefeller University Press 42(1987)77.Google Scholar
26.Somlyo, A.V. et al., J. Cell Biol. 90(1981)577.CrossRefGoogle Scholar
27.Swyt, C.R., in Williams, D. et al., Eds., X-Ray Spectrometry in Electron Beam Instruments, New York Plenum Press (1995)159.CrossRefGoogle Scholar
28.Tang, Z. et al., J. Microsc. 175(1994)100.CrossRefGoogle Scholar
29.Wang, Y.Y. et al., Ultramicroscopy 41(1992)11.CrossRefGoogle Scholar
30.Yoshioka, T. and Somlyo, A.P., J. Cell Biol. 99(1984)558.CrossRefGoogle Scholar
31. Supported by NIH grant HL48807.Google Scholar