Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T16:42:54.721Z Has data issue: false hasContentIssue false

Imaging, Core-Loss, and Low-Loss Electron-Energy-Loss Spectroscopy Mapping in Aberration-Corrected STEM

Published online by Cambridge University Press:  02 July 2010

Sorin Lazar
Affiliation:
Department of Materials Science and Engineering and Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada FEI Electron Optics, 5600 KA Eindhoven, The Netherlands
Yang Shao
Affiliation:
Department of Materials Science and Engineering and Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
Lina Gunawan
Affiliation:
Department of Materials Science and Engineering and Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
Riad Nechache
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
Alain Pignolet
Affiliation:
INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
Gianluigi A. Botton*
Affiliation:
Department of Materials Science and Engineering and Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

High-angle annular dark-field and annular bright-field imaging experiments were carried out on an aberration-corrected transmission electron microscope. These techniques have been demonstrated on thin films of complex oxides Ba3.25La0.75Ti3O12 and on LaB6. The results show good agreement between theory and experiments, and for the case of LaB6 they demonstrate the detection of contrast from the B atoms in the annular bright-field images. Elemental mapping with electron-energy-loss spectroscopy has been used to deduce the distribution of Cr and Fe in a thin film of the complex oxide Bi2(Fe1/2Cr3/2)O6 at the unit cell level and the changes in the near-edge structure within the inequivalent regions in the crystalline unit cell. Energy-filtered images in the low-loss region of the energy-loss spectrum show contrast and resolution consistent with the modulation of the signals from elastic scattering. High-resolution contrast, mediated by phonon scattering, is observed for interband transitions. The limitations in terms of detection and signal are discussed.

Type
Special Section—Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barfels, M.M.G., Kundmann, M., Trevor, C. & Hunt, J.A. (2005). The effect of Cs-correction on filtered imaging and spectral energy resolution for a post column imaging filter. Microsc Microanal 11 (S2), 488489.CrossRefGoogle Scholar
Bosman, M., Keast, V.J., Garcia-Munoz, J.L., D'Alfonso, A.J., Findlay, S.D. & Allen, L.J. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102.CrossRefGoogle ScholarPubMed
Botton, G.A., Lazar, S. & Dwyer, C. (2010). Elemental mapping at the atomic scale using low accelerating voltages. Ultramicroscopy 110(8), 926934.CrossRefGoogle Scholar
Colliex, C., Brun, N., Gloter, A., Imhoff, D., Kociak, M., March, K., Mory, C., Stephan, O., Tencé, M. & Walls, M. (2009). Multi-dimensional and multi-signal approaches in scanning transmission electron microscopes. Phil Trans R Soc A 367, 38453858.CrossRefGoogle ScholarPubMed
D'Alfonso, A.J., Findlay, S.D., Oxley, M.P. & Allen, L.J. (2008). Volcano structure in atomic resolution core-loss images. Ultramicroscopy 108, 677687.CrossRefGoogle ScholarPubMed
Dwyer, C. (2005a). Multislice theory of fast electron scattering incorporating atomic inner-shell ionization. Ultramicroscopy 104, 141151.CrossRefGoogle ScholarPubMed
Dwyer, C. (2005b). Relativistic effects in atomic inner-shell ionization by a focused electron probe. Phys Rev B 72, 144102.CrossRefGoogle Scholar
Dwyer, C., Findlay, S.D. & Allen, L.J. (2008). Multiple elastic scattering of core-loss electrons in atomic resolution imaging. Phys Rev B 77, 184107.CrossRefGoogle Scholar
Egerton, R.F. (1996). EELS in the Electron Microscope. New York: Springer.Google Scholar
Findlay, S.D., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., Yamamoto, T. & Ikuhara, Y. (2009). Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl Phys Lett 95, 191913.CrossRefGoogle Scholar
Gautreau, O., Harnagea, C., Gunawan, L., Botton, G.A., Normandin, F., Veres, T., Pintille, L., Alexe, M. & Pignolet, A. (2008). Structural and multiferroic properties of epitaxial γ-Fe2O3-BiFeO3/Bi3.25La0.75Ti3O12 composite bi-layers. J Phys D 41, 112002.CrossRefGoogle Scholar
Gunawan, L., Lazar, S., Gautreau, O., Harnagea, C., Pignolet, A. & Botton, G.A. (2009). Locating La atoms in epitaxial Bi3.25La0.75Ti3O12 films through atomic resolution electron energy loss spectroscopy mapping. App Phys Lett 95, 192902.CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S., Kabius, B. & Urban, K. (1998a). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Elect Microsc 47, 395405.CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998b). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.CrossRefGoogle Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998c). Electron microscopy image enhanced. Nature 392, 768769.CrossRefGoogle Scholar
Jia, C.L. & Urban, K. (2004). Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 20012004.CrossRefGoogle ScholarPubMed
Kim, S.J., Moriyoshi, C., Kimura, S., Kuroiwa, Y., Kato, K., Takata, M., Noguchi, Y. & Miyayama, M. (2007). Direct observation of oxygen stabilization in layered ferroelectric Bi3.25La0.75Ti3O12. Appl Phys Lett 91, 062913.Google Scholar
Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matusui, Y. & Ishizuka, K. (2007). Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702704.CrossRefGoogle Scholar
Kirkland, E.J. (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.CrossRefGoogle Scholar
Kisielowski, C., Freitag, B., Bischoff, M., Van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., Van Der Stam, M., Von Harrach, S., Stekelenburg, M., Haider, M., Muller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E., Donchev, T., Kenik, E.A., Lupini, A., Bentley, J., Pennycook, S., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q., Erni, R., Watanabe, M., Stach, E., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-angstrom information limit. Microsc Microanal 14, 454462.CrossRefGoogle ScholarPubMed
Krivanek, O.L, Dellby, N. & Lupini, A.R. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.CrossRefGoogle Scholar
Krivanek, O.L., Nellist, P.D., Dellby, N., Murfitt, M.F. & Szilagyi, Z. (2003). Towards sub-0.5 angstrom electron beams. Ultramicroscopy 96, 229237.CrossRefGoogle Scholar
Muller, D.A. (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8, 263270.CrossRefGoogle ScholarPubMed
Nechache, R., Harnagea, C., Gunawan, L., Carignan, L.-P., Maunders, C., Ménard, D., Botton, G.A. & Pignolet, A. (2007). Growth, structure, and properties of BiFeO3-BiCrO3 films obtained by dual cross beam PLD. IEEE T Ultrason Ferr 54, 26452652.CrossRefGoogle ScholarPubMed
Okunishi, E., Ishikawa, I., Sawada, H., Hosokawa, F., Hori, M. & Kondo, Y. (2009). Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc Microanal 15(S2), 164165.CrossRefGoogle Scholar
Oxley, M.P., Varela, M., Pennycook, T.J., Van Benthem, K., Findlay, S.D., D'Alfonso, A.J., Allen, L.J. & Pennycook, S.J. (2007). Interpreting atomic-resolution spectroscopic images. Phys Rev B, 76, 064303.CrossRefGoogle Scholar
Sato, Y., Terauchi, M., Tanaka, M., Mukai, M., Kaneyama, T., Adachi, K. & Asahi, T. (2008). High energy-resolution EELS studies on electronic excitations of LaB6 and Cs0.33WO3 particles by using a monochromator transmission microscope. Microsc Microanal 14(S2), 13561357.CrossRefGoogle Scholar
Varela, M., Luo, W., Tao, J., Oxley, M.P., Lupini, A.R., Pantelides, S.T., Pennycook, S.J., Watanabe, M., Tian, W. & Maudrus, D.G. (2009). Atomic-resolution imaging of oxidation states in manganites. Phys Rev B 79, 085117.CrossRefGoogle Scholar