Published online by Cambridge University Press: 02 July 2020
Zirconolite (CaZrTi2O7) is the major host phase for actinides in Synroc, a promising waste form for the immobilisation of high-level radioactive waste. The effect of radiation damage on the structure and durability of zirconolite are important to predictive modelling of zirconolite's behaviour in the repository environment and risk assessment.
In this study, radiation damage effects in zirconolite were investigated by irradiating samples with 1.5 MeV Kr+ ions using the HVEM-Tandem at Argonne National Laboratory (ANL) and energy loss electron spectroscopy (EELS). The HVEM-Tandem consists of a modified AEI high votage transmission electron microscope interfaced to to a 2 MV tandem ion accelerator. EELS spectra were collected using a Philips 420 TEM, operated at 120 kV, fitted with a Gatan Model 607 Serial EELS. EELS data were recorded at resolutions of ˜1.0 eV and at a dispersion of about ˜0.25 eV.
Selected area diffraction patterns (SADs) of individual grains of various zirconolites were monitored as a function of dose to establish the critical dose for aniorphisation (Dc).