Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T17:24:35.177Z Has data issue: false hasContentIssue false

How Can Female Germline Stem Cells Contribute to the Physiological Neo-Oogenesis in Mammals and Why Menopause Occurs?

Published online by Cambridge University Press:  16 July 2010

Antonin Bukovsky*
Affiliation:
Department of Obstetrics and Gynecology, The University of Tennessee College of Medicine and Graduate School of Medicine, Knoxville, Tennessee 37920, USA
Get access

Abstract

At the beginning of the last century, reproductive biologists have discussed whether in mammalian species the fetal oocytes persist or are replaced by neo-oogenesis during adulthood. Currently the prevailing view is that neo-oogenesis is functional in lower vertebrates but not in mammalian species. However, contrary to the evolutionary rules, this suggests that females of lower vertebrates have a better opportunity to provide healthy offspring compared to mammals with oocytes subjected to environmental threats for up to several decades. During the last 15 years, a new effort has been made to determine whether the oocyte pool in adult mammals is renewed as well. Most recently, Ji Wu and colleagues reported a production of offspring from female germline stem cells derived from neonatal and adult mouse ovaries. This indicates that both neonatal and adult mouse ovaries carry stem cells capable of producing functional oocytes. However, it is unclear whether neo-oogenesis from ovarian somatic stem cells is physiologically involved in follicular renewal and why menopause occurs. Here we review observations that indicate an involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from ovarian stem cells during the prime reproductive period and propose why menopause occurs in spite of persisting ovarian stem cells.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, E. (1923). Ovogenesis during sexual maturity. Am J Anat 31, 439481.CrossRefGoogle Scholar
Allen, E. & Creadick, R.N. (1937). Ovogenesis during sexual maturity, the first stage, mitosis in the germinal epithelium, as shown by the colchicine technique. Anat Rec 69, 191195.CrossRefGoogle Scholar
Allen, E., Kountz, W.B. & Francis, B.F. (1925). Selective elimination of ova in the adult ovary. Am J Anat 34, 445467.CrossRefGoogle Scholar
Block, E. (1952). Quantitative morphological investigations of the follicular system in women. Variations at different ages. Acta Anat (Basel) 14, 108123.CrossRefGoogle ScholarPubMed
Bousfield, G.R., Butnev, V.Y., Gotschall, R.R., Baker, V.L. & Moore, W.T. (1996). Structural features of mammalian gonadotropins. Mol Cell Endocrinol 125, 319.CrossRefGoogle ScholarPubMed
Bukovsky, A. (2006a). Immune system involvement in the regulation of ovarian function and augmentation of cancer. Microsc Res Tech 69, 482500.CrossRefGoogle ScholarPubMed
Bukovsky, A. (2006b). Oogenesis from human somatic stem cells and a role of immune adaptation in premature ovarian failure. Curr Stem Cell Res Ther 1, 289303.CrossRefGoogle Scholar
Bukovsky, A. (2007a). Cell commitment by asymmetric division and immune system involvement. Prog Mol Subcell Biol 45, 179204.CrossRefGoogle ScholarPubMed
Bukovsky, A. (2007b). Human oogenesis and follicular renewal from ovarian somatic stem cells. In Stem Cell Research Developments, Fong, C.A. (Ed.), pp. 229272. Hauppauge, NY: Nova Science Publishers, Inc.Google Scholar
Bukovsky, A. (2008). Ovarian stem cells and mammalian neo-oogenesis. Microsc Microanal 14(S2), 1474CD1475CD.CrossRefGoogle Scholar
Bukovsky, A. (2009). Sex steroid-mediated reprogramming of vascular smooth muscle cells to stem cells and neurons: Possible utilization of sex steroid combinations for regenerative treatment without utilization of in vitro developed stem cells. Cell Cycle 8(24), 40794084.CrossRefGoogle ScholarPubMed
Bukovsky, A., Ayala, M.E., Dominguez, R., Svetlikova, M. & Selleck-White, R. (2007). Bone marrow derived cells and alternative pathways of oogenesis in adult rodents. Cell Cycle 6(18), 23062309.CrossRefGoogle ScholarPubMed
Bukovsky, A. & Caudle, M.R. (2008). Immune physiology of the mammalian ovary—A review. Am J Reprod Immunol 59, 1226.CrossRefGoogle ScholarPubMed
Bukovsky, A., Caudle, M.R., Gupta, S.K., Svetlikova, M., Selleck-White, R., Ayala, M.E. & Dominguez, R. (2008a). Mammalian neo-oogenesis and expression of meiosis-specific protein SCP3 in adult human and monkey ovaries. Cell Cycle 7(5), 683686.CrossRefGoogle ScholarPubMed
Bukovsky, A., Caudle, M.R. & Svetlikova, M. (2008b). Steroid-mediated differentiation of neural/neuronal cells from epithelial ovarian precursors in vitro. Cell Cycle 7(22), 35773583.CrossRefGoogle ScholarPubMed
Bukovsky, A., Caudle, M.R., Svetlikova, M. & Upadhyaya, N.B. (2004). Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol 2, 20; available at http://www.rbej.com/content/2/1/20.CrossRefGoogle ScholarPubMed
Bukovsky, A., Caudle, M.R., Svetlikova, M., Wimalasena, J., Ayala, M.E. & Dominguez, R. (2005a). Oogenesis in adult mammals, including humans: A review. Endocrine 26, 301316.CrossRefGoogle ScholarPubMed
Bukovsky, A., Caudle, M.R., Virant-Klun, I., Gupta, S.K., Dominguez, R., Svetlikova, M. & Xu, F. (2009). Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells. Birth Defects Res C Embryo Today 87, 6489.CrossRefGoogle ScholarPubMed
Bukovsky, A., Gupta, S.K., Bansal, P., Chakravarthy, S., Chaudhary, M., Svetlikova, M., White, R.S., Copas, P., Upadhyaya, N.B., Van Meter, S.E. & Caudle, M.R. (2008c). Production of monoclonal antibodies against recombinant human zona pellucida glycoproteins: Utility in immunolocalization of respective zona proteins in ovarian follicles. J Reprod Immunol 78(2), 102114.CrossRefGoogle ScholarPubMed
Bukovsky, A., Gupta, S.K., Svetlikova, M., White, R.S., Copas, P., Upadhyaya, N.B. & Van Meter, S.E. (2008d). Immunoregulation of ovarian homeostasis. In Novel Concepts in Ovarian Endocrinology, Gonzalez-Bulnes, A. (Ed.), pp. 131168. Kerala, India: Research Signpost.Google Scholar
Bukovsky, A., Keenan, J.A., Caudle, M.R., Wimalasena, J., Upadhyaya, N.B. & Van Meter, S.E. (1995). Immunohistochemical studies of the adult human ovary: Possible contribution of immune and epithelial factors to folliculogenesis. Am J Reprod Immunol 33, 323340.CrossRefGoogle ScholarPubMed
Bukovsky, A., Svetlikova, M. & Caudle, M.R. (2005b). Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol 3, 17; available at http://www.rbej.com/content/3/1/17.CrossRefGoogle ScholarPubMed
Bukovsky, A. & Virant-Klun, I. (2006). Adult stem cells in the human ovary. In Stem Cells in Reproductive Medicine: Basic Science & Therapeutic Potential, Simon, C. & Pellicer, A. (Eds.), pp. 5369. London: Informa Healthcare.Google Scholar
Bukovsky, A., Virant-Klun, I., Svetlikova, M. & Willson, I. (2006). Ovarian germ cells. Methods Enzymol 419, 208258.CrossRefGoogle ScholarPubMed
Eggan, K., Jurga, S., Gosden, R., Min, I.M. & Wagers, A.J. (2006). Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 441, 11091114.CrossRefGoogle ScholarPubMed
Erickson, B.H. (1966). Development and senescence of the postnatal bovine ovary. J Anim Sci 25, 800805.CrossRefGoogle ScholarPubMed
Evans, H.M. & Swezy, O. (1931). Ovogenesis and the normal follicular cycle in adult mammalia. Mem Univ Calif 9, 119224.Google Scholar
Franchi, L.L., Mandl, A.M. & Zuckerman, S. (1962). The development of the ovary and the process of oogenesis. In The Ovary, Zuckerman, S. (Ed.), pp. 188. London: Academic Press.Google Scholar
Ganguly, A., Bukovsky, A., Sharma, R.K., Pankaj, B., Bhandari, B. & Gupta, S.K. (2010). In humans, zona pellucida glycopotein-1 binds to spermatozoa and induces acrosomal exocytosis. Hum Reprod 25, 16431656.CrossRefGoogle ScholarPubMed
Hershkovitz, R., Erez, O., Sheiner, E., Landau, D., Mankuta, D. & Mazor, M. (2003). Elevated maternal mid-trimester chorionic gonadotropin > or =4 MoM is associated with fetal cerebral blood flow redistribution. Acta Obstet Gynecol Scand 82, 2227.Google ScholarPubMed
Ingram, D.L. (1962). Atresia. In The Ovary, Zuckerman, S. (Ed.), pp. 247273. London: Academic Press.Google Scholar
Johnson, J. (2006). Stem cell support of ovary function and fertility. In Stem Cells in Reproductive Medicine: Basic Science & Therapeutic Potential, Simon, C. & Pellicer, A. (Eds.), pp. 3144. London: Informa Healthcare.Google Scholar
Johnson, J., Bagley, J., Skaznik-Wikiel, M., Lee, H.J., Adams, G.B., Niikura, Y., Tschudy, K.S., Tilly, J.C., Cortes, M.L., Forkert, R., Spitzer, T., Iacomini, J., Scadden, D.T. & Tilly, J.L. (2005). Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122, 303315.CrossRefGoogle ScholarPubMed
Johnson, J., Canning, J., Kaneko, T., Pru, J.K. & Tilly, J.L. (2004). Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145150.CrossRefGoogle ScholarPubMed
Kerr, J.B., Duckett, R., Myers, M., Britt, K.L., Mladenovska, T. & Findlay, J.K. (2006). Quantification of healthy follicles in the neonatal and adult mouse ovary: Evidence for maintenance of primordial follicle supply. Reproduction 132, 95109.CrossRefGoogle ScholarPubMed
Kingery, H.M. (1917). Oogenesis in the white mouse. J Morphol 30, 261315.CrossRefGoogle Scholar
Lee, H.J., Selesniemi, K., Niikura, Y., Niikura, T., Klein, R., Dombkowski, D.M. & Tilly, J.L. (2007). Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol 25, 31983204.CrossRefGoogle Scholar
Liu, Y., Wu, C., Lyu, Q., Yang, D., Albertini, D.F., Keefe, D.L. & Liu, L. (2007). Germline stem cells and neo-oogenesis in the adult human ovary. Dev Biol 306, 112120.CrossRefGoogle ScholarPubMed
Mathe, G. (1997). Immunity aging. I. The chronic perduration of the thymus acute involution at puberty? Or the participation of the lymphoid organs and cells in fatal physiologic decline? Biomed Pharmacother 51, 4957.CrossRefGoogle ScholarPubMed
Mossman, H.W. & Duke, K.L. (1973). Some comparative aspects of the mammalian ovary. In Handbook of Physiology, Sect. 7: Endocrinology, Greep, R.O. (Ed.), pp. 389402. Washington, DC: American Physiological Society.Google Scholar
Motta, P.M., Van Blerkom, J. & Makabe, S. (1980). Changes in the surface morphology of ovarian “germinal” epithelium during the reproductive cycle and in some pathological conditions. J Submicrosc Cytol 12, 407425.Google Scholar
Penny, R., Olambiwonnu, O. & Frasier, S.D. (1976). Measurement of human chorionic gonadotropin (HCG) concentrations in paired maternal and cord sera using an assay specific for the beta subunit of HCG. Pediatrics 58, 110114.CrossRefGoogle ScholarPubMed
Romeu, M., Simon, C. & Pellicer, A. (2006). Adult stem cells in the human ovary: Hope or fiction? In Stem Cells in Reproductive Medicine: Basic Science & Therapeutic Potential, Simon, C. & Pellicer, A. (Eds.), pp. 4552. London: Informa Healthcare.Google Scholar
Tilly, J.L. & Telfer, E.E. (2009). Purification of germline stem cells from adult mammalian ovaries: A step closer towards control of the female biological clock? Mol Hum Reprod 15, 393398.CrossRefGoogle ScholarPubMed
Tres, L.L. (2005). XY chromosomal bivalent: Nucleolar attraction. Mol Reprod Dev 72, 16.CrossRefGoogle ScholarPubMed
Van Blerkom, J. & Motta, P.M. (1979). The Cellular Basis of Mammalian Reproduction. Baltimore-Munich: Urban & Schwarzenberg.Google Scholar
Virant-Klun, I., Rozman, P., Cvjeticanin, B., Vrtacnik-Bokal, E., Novakovic, S. & Ruelicke, T. (2009). Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev 18(1), 137150.CrossRefGoogle ScholarPubMed
Virant-Klun, I., Zech, N., Rozman, P., Vogler, A., Cvjeticanin, B., Klemenc, P., Malicev, E. & Meden-Vrtovec, H. (2008). Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 76(8), 843856.CrossRefGoogle ScholarPubMed
Waldeyer, W. (1870). Eierstock und Ei. Leipzig, Germany: Engelmann.Google Scholar
Zou, K., Yuan, Z., Yang, Z., Luo, H., Sun, K., Zhou, L., Xiang, J., Shi, L., Yu, Q., Zhang, Y., Hou, R. & Wu, J. (2009). Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 11, 631636.CrossRefGoogle ScholarPubMed
Zuckerman, S. (1951). The number of oocytes in the mature ovary. Recent Prog Horm Res 6, 63109.Google Scholar