Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T12:05:18.587Z Has data issue: false hasContentIssue false

HOLZ Rings in EBSD Patterns of the UFeB4 Compound: Association with a Random Distribution of Planar Defects

Published online by Cambridge University Press:  17 September 2013

Marta Dias*
Affiliation:
IST/ITN, Instituto Superior Técnico, University of Lisbon, Estrada Nacional 10, 2686-953 Sacavém, Portugal ICEMS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Patrícia Almeida Carvalho
Affiliation:
ICEMS, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Isabel Cordeiro dos Santos
Affiliation:
IST/ITN, Instituto Superior Técnico, University of Lisbon, Estrada Nacional 10, 2686-953 Sacavém, Portugal
Olivier Tougait
Affiliation:
Institut des Sciences Chimiques de Rennes, Chemie du Solide et Matériaux, UMR CNRS 6226, Université de Rennes 1, Avenue de Général Leclerc, 35042 Rennes, France
Ladislav Havela
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
António Pereira Gonçalves
Affiliation:
IST/ITN, Instituto Superior Técnico, University of Lisbon, Estrada Nacional 10, 2686-953 Sacavém, Portugal
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The UFeB4 phase present in different alloys of the B–Fe–U system was studied by powder X-ray diffraction (PXRD) and scanning electron microscopy complemented with energy-dispersive spectroscopy and electron backscattered diffraction (EBSD). The PXRD data showed that the ternary compound crystallized adopting essentially the YCrB4-type structure. However, microstructural observations revealed that under high undercooling conditions the UFeB4 phase exhibits a random distribution of defects parallel to, which are consistently associated with intense higher-order Laue zone rings in EBSD patterns. Indexation of the EBSD patterns showed that the defective structure is compatible with an intergrowth of YCrB4- and ThMoB4-type layers according to the (010)YCrB4//(110)ThMoB4 and [001]YCrB4//[001]ThMoB4 orientation relation previously reported for an analogous compound. Magnetic studies indicated that the annealed UFeB4 compound has a paramagnetic behavior in the 2–300 K temperature range.

Type
Portuguese Society for Microscopy
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boudias, C. & Monceau, D. (1989–2005). Carine crystallography software package. Available at http://carine.crystallography.pagespro-orange.fr/.Google Scholar
Dias, M., Carvalho, P.A., Dias, A.P., Bonh, M., Franco, N., Tougait, O., Noël, H. & Gonçalves, A.P. (2010). Cascade of peritectic reactions in the B-Fe-U system. J Phase Equilib Diffus 31(2), 104112.CrossRefGoogle Scholar
Dias, M., Carvalho, P.A., Mardolcar, U.V., Tougait, O., Noël, H. & Gonçalves, A.P. (2013a). Liquidus projection of the B-Fe-U diagram: The boron-rich corner. Metall Mater Trans A 44(1), 395405.CrossRefGoogle Scholar
Dias, M., Carvalho, P.A., Mardolcar, U.V., Tougait, O., Noël, H. & Gonçalves, A.P. (2013b). Liquidus projection of the B-Fe-U diagram: The Fe-rich corner. Metall Mater Trans A 44(5), 22702284.CrossRefGoogle Scholar
Dias, M., Carvalho, P.A., Sologub, O., Pereira, L.C.J., Santos, I.C. & Gonçalves, A.P. (2009). Studies on the new UFe2B6 phase. J Alloys Compd 492(1-2), L13L15.CrossRefGoogle Scholar
Dias, M., Carvalho, P.A., Sologub, O., Tougait, O., Noël, H., Godart, C., Leroy, E. & Gonçalves, A.P. (2007). Isothermal section at 950°C of the U-Fe-B ternary system. Intermetall 15, 413418.Google Scholar
Galatanu, A., Yamamoto, E., Yoshinori, H. & Yoshichika, O. (2006). Magnetic behavior of UB4 at high temperatures. Phys B 378380, 9991000.CrossRefGoogle Scholar
Gonçalves, A.P. & Noël, H. (2005). Isothermal section at 850°C of the U-Fe-Al ternary system. Intermetallics 13, 580585.CrossRefGoogle Scholar
Joy, D.C., Newbury, D.E. & Davidson, D.L. (1982). Electron channeling patterns in the scanning electron microscope. J Appl Phys 53(8), R81R122.CrossRefGoogle Scholar
Kuzma, Y.B. & Chaban, N.F. (1990). Binary and Ternary Systems Containing Boron, Moscow, Metallurgy (in Russian).Google Scholar
Michael, J.R. & Eades, J.A. (2000). Use of reciprocal lattice layer spacing electron backscatter diffraction pattern analysis. Ultramicroscopy 81, 6781.CrossRefGoogle ScholarPubMed
Noël, H. & Gonçalves, A.P. (2001). Isothermal section at 750°C of the U-Fe-Sn ternary system. Intermetallics 9, 473479.CrossRefGoogle Scholar
Nozle, G. & Kraus, W. (1999). Powder Cell for Windows Version 2.2. Berlin, Germany: Federal Institute for Materials Research and Testing.Google Scholar
Oxford Instruments HKL (2007). The HKL Channel 5 software. Available at http://www.oxinst.eu/products/microanalysis/ebsd/ebsd-acquisitionsoftware/Pages/channel5.aspx.Google Scholar
Sechovsky, V. & Havela, L. (1992). Anisotropic hybridization and magnetism in actinide intermetallics. Phys Scr T45, 99102.CrossRefGoogle Scholar
Sobczak, R. & Rogl, P. (1979). Magnetic behavior of new ternary metal borides with YCrB4-type structure. J Solid State Chem 27, 343348.Google Scholar
Valyovka, I.P. & Kuzma, Y.B. (1974). Dopovidi Akademii Nauk Ukrainskoi RSR. A: Fiz.-Tekhn. Mat Nauki 1029.Google Scholar
Valyovka, I.P. & Kuzma, Y.B. (1975). Dopovidi Akademii Nauk Ukrainskoi RSR. A: Fiz.-Tekhn. Mat. Nauki 652.Google Scholar
Villars, E. & Calvert, L.D. (1991). Pearson's Handbook of Crystallographic Data for Intermetallic Phases. Materials Park, OH: ASM International.Google Scholar
Winkelmann, A. (2000). Dynamical simulation of electron backscatter diffraction patterns. In Electron Backscatter Diffraction in Materials Science, Schwartz, A.J. & Kumar, M. (Eds.), p. 27. New York: Springer.Google Scholar
Yubuta, K., Mori, T., Leithe-Jasper, A., Grin, Y., Okada, S. & Shishido, T. (2009). Direct observation of the intergrowth α–phase in β-TmAlB4 via high-resolution electron microscopy. Mater Res Bull 44, 17431746.CrossRefGoogle Scholar