Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T18:46:34.807Z Has data issue: false hasContentIssue false

High-Coherence Electron and Ion Bunches From Laser-Cooled Atoms

Published online by Cambridge University Press:  24 April 2014

Ben M. Sparkes
Affiliation:
School of Physics, ARC Centre of Excellence for Coherent X-Ray Science, The University of Melbourne, Parkville, VIC 3010, Australia
Daniel J. Thompson
Affiliation:
School of Physics, ARC Centre of Excellence for Coherent X-Ray Science, The University of Melbourne, Parkville, VIC 3010, Australia
Andrew J. McCulloch
Affiliation:
School of Physics, ARC Centre of Excellence for Coherent X-Ray Science, The University of Melbourne, Parkville, VIC 3010, Australia
Dene Murphy
Affiliation:
School of Physics, ARC Centre of Excellence for Coherent X-Ray Science, The University of Melbourne, Parkville, VIC 3010, Australia
Rory W. Speirs
Affiliation:
School of Physics, ARC Centre of Excellence for Coherent X-Ray Science, The University of Melbourne, Parkville, VIC 3010, Australia
Joshua S. J. Torrance
Affiliation:
School of Physics, ARC Centre of Excellence for Coherent X-Ray Science, The University of Melbourne, Parkville, VIC 3010, Australia
Robert E. Scholten*
Affiliation:
School of Physics, ARC Centre of Excellence for Coherent X-Ray Science, The University of Melbourne, Parkville, VIC 3010, Australia
*
*Corresponding author. [email protected]
Get access

Abstract

Cold atom electron and ion sources produce electron bunches and ion beams by photoionization of laser-cooled atoms. They offer high coherence and the potential for high brightness, with applications including ultra-fast electron-diffractive imaging of dynamic processes at the nanoscale. The effective brightness of electron sources has been limited by nonlinear divergence caused by repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that electron bunches with ellipsoidal shape and uniform density distribution have linear internal Coulomb fields, such that the Coulomb explosion can be reversed using conventional optics. Our source can create bunches shaped in three dimensions and hence in principle achieve the transverse spatial coherence and brightness needed for picosecond-diffractive imaging with nanometer resolution. Here we present results showing how the shaping capability can be used to measure the spatial coherence properties of the cold electron source. We also investigate space-charge effects with ions and generate electron bunches with durations of a few hundred picoseconds. Future development of the cold atom electron and ion source will increase the bunch charge and charge density, demonstrate reversal of Coulomb explosion, and ultimately, ultra-fast coherent electron-diffractive imaging.

Type
FEMMS Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, R.P., Mohapatra, A.K., Bason, M.G., Pritchard, J.D., Weatherill, K.J., Raitzsch, U. & Adams, C.S. (2009). Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system. Appl Phys Lett 94, 071107.CrossRefGoogle Scholar
Bannasch, G., Killian, T.C. & Pohl, T. (2013). Strongly coupled plasmas via Rydberg blockade of cold atoms. Phys Rev Lett 110, 253003.CrossRefGoogle ScholarPubMed
Bell, S.C., Junker, M., Jasperse, M., Turner, L.D., Lin, Y.-J., Spielman, I.B. & Scholten, R.E. (2010). A slow atom source using a collimated effusive oven and a single-layer variable pitch coil Zeeman slower. Rev Sci Instrum 81, 013105.CrossRefGoogle Scholar
Chapman, H.N., Fromme, P., Barty, A., White, T.A., Kirian, R.A., Aquila, A., Hunter, M.S., Schulz, J., DePonte, D.P., Weierstall, U., Doak, R.B., Maia, F.R.N.C., Martin, A.V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R.L., Epp, S.W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M.J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kühnel, K.-U., Messerschmidt, M., Bozek, J.D., Hau-Riege, S.P., Frank, M., Hampton, C.Y., Sierra, R.G., Starodub, D., Williams, G.J., Hajdu, J., Timneanu, N., Seibert, M.M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C.-D., Krasniqi, F., Bott, M., Schmidt, K.E., Wang, X., Grotjohann, I., Holton, J.M., Barends, T.R.M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J.C. (2011). Femtosecond X-ray protein nanocrystallography. Nature 470, 7377.CrossRefGoogle ScholarPubMed
Claessens, B., van der Geer, S., Taban, G., Vredenbregt, E. & Luiten, O. (2005). Ultracold electron source. Phys Rev Lett 95, 164801.CrossRefGoogle ScholarPubMed
Dwyer, J.R., Hebeisen, C.T., Ernstorfer, R., Harb, M., Deyirmenjian, V.B., Jordan, R.E. & Miller, R.J.D. (2006). Femtosecond electron diffraction: “Making the molecular movie”. Phil Trans R Soc A 364, 741778.CrossRefGoogle Scholar
Engelen, W.J., van der Heijden, M.A., Bakker, D.J., Vredenbregt, E.J.D. & Luiten, O.J. (2013). High-coherence electron bunches produced by femtosecond photoionization. Nat Commun 4, 1693.CrossRefGoogle ScholarPubMed
Ketterle, W., Davis, K.B., Joffe, M.A., Martin, A. & Pritchard, D.E. (1993). High densities of cold atoms in a dark spontaneous-force optical trap. Phys Rev Lett 70, 22532256.CrossRefGoogle Scholar
Kime, L., Fioretti, A., Bruneau, Y., Porfido, N., Fuso, F., Viteau, M., Khalili, G., Šantić, N., Gloter, A., Rasser, B., Sudraud, P., Pillet, P. & Comparat, D. (2013). High-flux monochromatic ion and electron beams based on laser-cooled atoms. Phys Rev A 88, 033424.CrossRefGoogle Scholar
Knuffman, B., Steele, A.V. & McClelland, J.J. (2013). Cold atomic beam ion source for focused ion beam applications. J Appl Phys 114, 044303.CrossRefGoogle Scholar
Knuffman, B., Steele, A.V., Orloff, J. & McClelland, J.J. (2011). Nanoscale focused ion beam from laser-cooled lithium atoms. J Phys 13, 103035.Google Scholar
Luiten, O., van der Geer, S., de Loos, M., Kiewiet, F. & van der Wiel, M. (2004). How to realize uniform three-dimensional ellipsoidal electron bunches. Phys Rev Lett 93, 94802.CrossRefGoogle ScholarPubMed
McCulloch, A.J., Sheludko, D.V., Junker, M. & Scholten, R.E. (2013). High-coherence picosecond electron bunches from cold atoms. Nat Commun 4, 1692.CrossRefGoogle ScholarPubMed
McCulloch, A.J., Sheludko, D.V., Saliba, S.D., Bell, S.C., Junker, M., Nugent, K.A. & Scholten, R.E. (2011). Arbitrarily shaped high-coherence electron bunches from cold atoms. Nat Phys 7, 785788.CrossRefGoogle Scholar
Pinto, L.H., Holsinger, L.J. & Lamb, R.A. (1992). Influenza virus M2 protein has ion channel activity. Cell 69, 517528.CrossRefGoogle ScholarPubMed
Robert-de Saint-Vincent, M., Hofmann, C.S., Schempp, H., Günter, G., Whitlock, S. & Weidemüller, M. (2013). Spontaneous avalanche ionization of a strongly blockaded Rydberg gas. Phys Rev Lett 110, 045004.CrossRefGoogle ScholarPubMed
Saliba, S.D., Putkunz, C.T., Sheludko, D.V., Mcculloch, A.J., Nugent, K.A. & Scholten, R.E. (2012). Spatial coherence of electron bunches extracted from an arbitrarily shaped cold atom electron source. Opt Exp 20, 39673974.CrossRefGoogle ScholarPubMed
Schotte, F., Lim, M., Jackson, T.A., Smirnov, A.V., Soman, J., Olson, J.S., Phillips, G.N., Wulff, M. & Anfinrud, P.A. (2003). Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300, 19441947.CrossRefGoogle ScholarPubMed
Sciaini, G. & Miller, R.J.D. (2011). Femtosecond electron diffraction: Heralding the era of atomically resolved dynamics. Rep Prog Phys 74, 096101.CrossRefGoogle Scholar
Sheludko, D.V., McCulloch, A.J., Jasperse, M., Quiney, H.M. & Scholten, R.E. (2010). Non-iterative imaging of inhomogeneous cold atom clouds using phase retrieval from a single diffraction measurement. Opt Exp 18, 623626.CrossRefGoogle ScholarPubMed
van der Geer, S.B., Reijnders, M.P., de Loos, M.J., Vredenbregt, E.J.D., Mutsaers, P.H.A. & Luiten, O.J. (2007). Simulated performance of an ultracold ion source. J Appl Phys 102, 094312.CrossRefGoogle Scholar