Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T12:02:03.867Z Has data issue: false hasContentIssue false

Hafnium-Silicon Precipitate Structure Determination in a New Heat-Resistant Ferritic Alloy by Precession Electron Diffraction Techniques

Published online by Cambridge University Press:  30 October 2013

Désirée Viladot
Affiliation:
Departament de Ciència de Materials i Enginyeria Metal·lúrgica, Facultat de Química, Universitat de Barcelona, C/Martí i Franquès 1-11, Barcelona 08028, Spain
Joaquim Portillo
Affiliation:
Centres Cientifics i Tecnològics (CCiT), Universitat de Barcelona/Solé i Sabaris 1-3, Barcelona 08028, Spain NanoMEGAS, Boulevard Edmond Machtens 79, Brussels B-1080, Belgium
Mauro Gemí
Affiliation:
Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy
Stavros Nicolopoulos
Affiliation:
NanoMEGAS, Boulevard Edmond Machtens 79, Brussels B-1080, Belgium
Núria Llorca-Isern*
Affiliation:
Departament de Ciència de Materials i Enginyeria Metal·lúrgica, Facultat de Química, Universitat de Barcelona, C/Martí i Franquès 1-11, Barcelona 08028, Spain
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The structure determination of an HfSi4 precipitate has been carried out by a combination of two precession electron diffraction techniques: high precession angle, 2.2°, single pattern collection at eight different zone axes and low precession angle, 0.5°, serial collection of patterns obtained by increasing tilts of 1°. A three-dimensional reconstruction of the associated reciprocal space shows an orthorhombic unit cell with parameters a = 11.4 Å, b = 11.8 Å, c = 14.6 Å, and an extinction condition of (hkl) h + k odd. The merged intensities from the high angle precession patterns have been symmetry tested for possible space groups (SG) fulfilling this condition and a best symmetrization residual found at 18% for SG 65 Cmmm. Use of the SIR2011 direct methods program allowed solving the structure with a structure residual of 18%. The precipitate objects of this study were reproducibly found in a newly implemented alloy, designed according to molecular orbital theory.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). SIR2011: A new package for crystal structure determination and refinement. J Appl Cryst 45, 357361.CrossRefGoogle Scholar
Gemmi, M., Calestani, G. & Migliori, A. (2002). Strategies in electron diffraction data collection. Adv Imag Elect Phys 123, 311325.CrossRefGoogle Scholar
Gorelik, T.E., Stewart, A.A. & Kolb, U. (2011). Structure solution with automated electron diffraction tomography data. Different instrumental approaches. J Microsc 244(3), 325331.CrossRefGoogle ScholarPubMed
Kolb, U., Mugnaioli, E. & Gorelik, T.E. (2011). Automated electron diffraction tomography—a new tool for nano crystal structure analysis. Cryst Res Technol (special issue) 46, 542554.Google Scholar
Morniroli, J.P. & Ji, G. (2009). Identification of the kinematical forbidden reflections from precession electron diffraction. Materials Research Symposium Proceedings, p. 1184. Materials Research Society. CrossRefGoogle Scholar
Morniroli, J.P., Redjaïmia, A. & Nicolopoulos, S. (2007). Contribution of electron precession to the identification of the space group from microdiffraction patterns. Ultramicroscopy 107, 514522.Google Scholar
Otten, M.T. (1991). High-angle annular dark-field imaging on a TEM/STEM system. J Elect Microsc Tech 17(2), 221230.Google Scholar
Own, C.S., Subramanian, A.K. & Marks, L.D. (2004). Quantitative analyses of precession diffraction data for a large cell oxide. Microsc Microanal 10, 96104.Google Scholar
Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA 2006. The Crystallographic Computing System. Praha, Czech Republic: Institute of Physics.Google Scholar
Rauch, E.F., Véron, M., Portillo, J., Bultreys, D., Maniette, Y. & Nicolopoulos, S. (2008). Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc Anal 22, S5.Google Scholar
Sinkler, W. & Marks, L.D. (1999). Application of direct methods for crystal structure determination using strongly dynamical bulk electron diffraction. Mater Charact 42(4-5), 283295.Google Scholar
Vincent, R. & Midgley, P.A. (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271282.Google Scholar
Weirich, T.E., Portillo, J., Cox, G., Hibst, H. & Nicolopoulos, S. (2006). Ab initio determination of the 393 framework structure of the heavy-metal oxide Csx Nb2.54W2.46O14 from 100 kV precession 394 electron diffraction data. Ultramicroscopy 106, 164175.CrossRefGoogle Scholar
Zou, X., Hovmöller, S. & Oleynikov, P. (2012). Electron crystallography. Crystallogr Rev 18(4), 253279.Google Scholar